Antimicrobial Activity of Fomitopsis Officinalis (Vill.) Bondartsev & Singer in Pure Culture

Authors

DOI:

https://doi.org/10.20535/ibb.2021.5.4.246668

Keywords:

antibiotic resistance, biologically active substances, mycelium, mycelial mass, culture fluid, gram-negative bacteria, gram-positive bacteria, disk diffusion method, anti-microbial activity

Abstract

Background. According to the World Health Organization antibiotic resistance is among the top ten threats to human health, food safety and development. Today antibiotic resistance has reached alarmingly high levels all over the world. Meanwhile, the increase in the synthetic drugs' production has led to the pathogenic mycobiota's rapid adaptation to the created chemicals, which have a narrow focus of application. That is why in modern biotechnology and pharmacology much attention is paid to natural producers of biologically active compounds, in particular – to xylotrophic fungi. It has been experimentally proven that the xylotrophic macromycete Fomitopsis officinalis or tinder fungus can be considered to be a promising producer of pharmacological substances with a broad spectrum of action. Studies of active metabolites, contained in the mycelial mass, culture fluid of the medicinal xylotrophic macromycete F. officinalis, and determination of their biological action remain relevant.

Objective. The objective was to determine the antimicrobial activity of culture fluid and mycelial mass of F. officinalis different strains from the mushrooms collection (IBK Mushroom Culture Collection of the M.G. Kholodny Institute of Botany, NAS of Ukraine) against gram-negative and gram-positive bacteria species.

Methods. An in vitro study of the antimicrobial activity of ethyl acetate extracts of culture fluid and aqueous-ethyl extracts of mycelial mass for F. officinalis strains IBK-5004, IBK-2497, IBK-2498 against gram-positive Staphylococcus aureus (B-918), Bacillus subtilis (В-901) and gram-negative Escherichia coli (B-906), Bacillus subtilis (B-900), Klebsiella pneumoniae (M-123) bacteria by disc-diffusion method was conducted.

Results. High antimicrobial activity of tinder fungus culture fluid and mycelial mass extracts against Staphylococcus aureus was established after the 21st day of cultivation, while on the 28th day the zone of growth retardation was maximal (15–25 mm). The highest indices were recorded in F. officinalis IBK-5004 (20–25 mm) and IBK-2498 (20–24 mm) strains. Antimicrobial activity against Klebsiella pneumoniae in culture fluid extracts was manifested on the 21st and 28th days of cultivation. The highest antimicrobial activity against Klebsiella pneumoniae was observed in the culture fluid of the strain F. officinalis IBK-5004, the diameter of the growth retardation zone was 18 mm on the 28th day of cultivation. Mycelial mass's extracts showed moderate activity on the 14th day of cultivation (7-8 mm); maximal activity was recorded on the 28th day (12–22 mm). The most active strain was Fomitopsis officinalis IBK-2498. No antimicrobial activity against test organisms was detected in the following studied strains: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis.

Conclusions. It has been established that the mycelial mass and culture fluid extracts of F. officinalis IBK-5004, IBK-2497, IBK-2498 strains have high antimicrobial activity against Staphylococcus aureus and moderate antimicrobial activity against Klebsiella pneumoniae on the 21st and 28th day of cultivation.

References

Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol. 2019;10:539. DOI: 10.3389/fmicb.2019.00539

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27. DOI: 10.1016/S1473-3099(17)30753-3

Agrawal DC, Dhanasekaran M, editors. Medicinal mushroom. Recent progress in research. 1st ed. Springer; 2019. 438 p. DOI: 10.1007/978-98-13-6382-5

Wasser SP. Medicinal mushroom science: History, current status, future trends, and unsolved problems. Int J Med Mushrooms. 2010;12(1):1-16. DOI: 10.1615/IntJMedMushr.v12.i1.10

Wasser SP. Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biomed J. 2014;37(6):345-56. DOI:10.4103/2319-4170.138318

Wu L, Wu ZC, Todosiichuk TS, Korneva OM. Nosocomial infections: pathogenicity, resistance and novel antimicrobials. Innov Biosyst Bioeng. 2021;5(2):73-84. DOI: 10.20535/ibb.2021.5.2.228970

Sidorenko ML, Buzoleva LS. Search for new types of raw materials for antibacterial drugs. Antibiotics Chemother. 2012;57(6):7-10.

Suay I, Arenal F, Asensio FJ, Basilio A, Cabello MA, Diez MT, Garcia JB, et al. Screening of Basidiomycetes for antimicrobial activites. Antonie Van Leeuwenhoek. 2000;78(2):129-40. DOI: 10.1023/A:1026552024021

Rosa LE, Machado KMG, Jacob CC, Capelari M, Rosa CA, Zani CL. Screening of Brazilian Basidiomycetes for antimi-crobial activity. Mem Inst Oswaldo Cruz Rio de Janerio. 2003;98(7):967-74. DOI: 10.1590/s0074-02762003000700019

Zjawiony JK. Biologically active compounds from aphyllophorales (polypore) fungi. J Nat Prod. 2004;67(2):300-10. DOI: 10.1021/np030372w

Dyakov MY, Kamzolkina OV, Shtaer OV, Bisko NA, Poyedinok NL, Mykchaylova OB. Morphological characteristics of natural strains of certain species of basidiomycetes and biological analysis of antimicrobial activity under submerged cultural conditions. Microbiology. 2011;80(2):274-85. DOI: 10.1134/S0026261711020044

Hwang CH, Jaki BU, Klein LL, Lankin DC, McAlpine JB, Napolitano JG. Chlorinated coumarins from the polypore mush¬room Fomitopsis officinalis and their activity against Mycobacterium tuberculosis. J Nat Prod. 2013;76(10):1916-23. DOI: 10.1021/np400497f

Grienke U, Zöll M, Peintner U, Rollinger JM. European medicinal polypores – A modern view on traditional uses. J Ethnoharmacol. 2014;154(3):564-83. DOI: 10.1016/j.jep.2014.04.030

Girometta C. Antimicrobial properties of Fomitopsis officinalis in the light of its bioactive metabolites: a review. Mycology. 2019;10(1):32-9. DOI: 10.1080/21501203.2018.1536680

Muszyńska B, Fijałkowska A, Sułkowska Ziaja, K, Włodarczyk A, Kaczmarczyk P, Nogaj E, et al. Fomitopsis officinalis: a species of arboreal mushroom with promising biological and medicinal properties. Chem Biodivers. 2020;17(6). DOI: 10.1002/cbdv.202000213

Airapetova AY, Gavrilin MV, Dmitriev AB, Mezenova TD. Examination of the structure of agaricinic acid using 1H and 13C NMR spectroscopy. Pharma Chem J. 2010;44(9):510-3. DOI: 10.1007/s11094-010-0505-7

Feng W, Yang JS. A new drimane sesquiterpenoid and a new triterpenelactone from fungus of Fomes officinalis. J Asian Natl Prod Res. 2015;17(11):1065-72. DOI: 10.1080/10286020.2015.1054378

Naranmandakh S, Murata T, Odonbayar B, Suganuma K, Batkhuu J, Sasaki K. Lanostane triterpenoids from Fomitopsis officinalis and their trypanocidal activity. J Natl. Med. 2018;72(2):523-9. DOI: 10.1007/s11418-018-1182-1

Vedenicheva NP, Al-Maali GA, Mytropolska NY, Mykchaylova OB, Bisko NA, Kosakivska IV. Endogenous cytokinins in medicinal Basidiomycetes mycelia biomass. Biotechnologia Acta. 2016;9(1):55-63. DOI: 10.15407/biotech9.01.055

Vedenicheva N, Al-Maali G, Bisko N, Lomberg M, Mytropolska N, Mykchaylova OB, et al. Cytokinins comparative analysis in mycelial biomass of medicinal mushrooms. Int J Med Mushrooms. 2018;20(9):837-47. DOI: 10.1615/IntJMedMushrooms.2018027797

Golovchenko VV, Naranmandakh S, Ganbaatar J, Prilepskii AY, Burygin G L, Chizhov AO, et al. Structural investigation and comparative cytotoxic activity of water-soluble polysaccharides from fruit bodies of the medicinal fungus quinine conk. Phytochemistry. 2020;175:112313. DOI: 10.1016/j.phytochem.2020.112313

Fijałkowska A, Muszyńska B, Sułkowska-Ziaja K, Kała K, Pawlik A, Stefaniuk D, et al. Medicinal potential of mycelium and fruiting bodies of an arboreal mushroom Fomitopsis officinalis in therapy of lifestyle diseases. Sci Rep. 2020;10(1):1-12. DOI: 10.1038/s41598-020-76899-1

Shi ZT, Bao HY, Feng S. Antitumor activity and structure activity relationshipof seven lanostane-type triterpenes from Fomitopsis pinicola and F. officinalis. China J Chin Mater Med. 2017;42(5):915-22. DOI: 10.19540/j.cnki.cjcmm.20170121.017

Lima VN, Oliveira-Tintino CD, Santos ES, Morais LP, Tintino SR, Freitas TS, et al. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb Pathogen. 2016;99:56-61. DOI: 10.1016/j.micpath.2016.08.004

Bisko N, Lomberg M, Mykchaylova O, Mytropolska N. IBK Mushroom Culture Collection. Version 1.2. The IBK Mu-shroom Culture Collection of the M.G. Kholodny Institute of Botany [Data file]. M.G. Kholodny Institute of Botany; 2020 [cited 2021 Dec 1]. Available from: https://doi.org/10.15468/dzdsqu

Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms: A review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr Res. 2016;424:30-41. DOI: 10.1016/j.carres.2016.02.008

Gromovykh TI, Gavryushina IA, Sadykova VS, Feldman NB, Dmitrenok AS, Ayrapetova AY, et al. Obtaining immobilized mycelium of basidiomycete Fomitopsis officinalis (Vill.:Fr.) Bond. et Sing., Producer of Agaricic Acid. Antibiotics Chemother. 2018;63(9-10):3-9.

Gargano ML, Van Griensven LJ, Isikhuemhen OS, Lindequist U, Venturella G, Wasser SP, Zervakis GI. Medicinal mushrooms: Valuable biological resources of high exploitation potential. Plant Biosyst. 2017;151(3):548-65. DOI: 10.1080/11263504.2017.1301590

Oorchak US. Biological activity of extracs Fomitipsis officinalis. Bull Samara Sci Center Russ Acad Sci. 2018;20(2):130-35.

Han J, Li L, Zhong J, Tohtaton Z, Ren Q, Han L. Officimalonic acids A−H, lanostane triterpenes from the fruiting bodies of Fomes officinalis. Phytochemistry. 2016;130:193-200. DOI: 10.1016/j.phytochem.2016.05.004

Yang W, Liu J, Blažeković B, Sun Y, Ma S, Ren C, et al. In vitro antibacterial effects of Tanreqing injection combined with vancomycin or linezolid against methicillin-resistant Staphylococcus aureus. BMC Complement Altern Med. 2018 May 30;18(1):169. DOI: 10.1186/s12906-018-2231-8

Monaco M, de Araujo FP, Cruciani M, Coccia EM, Pantosti A. Worldwide epidemiology and antibiotic resistance of Staphylococcus aureus. In: Bagnoli F, Rappuoli R, Grandi G, editors. Staphylococcus aureus. Current topics in microbiology and immunology, vol. 409. Cham: Springer. DOI: 10.1007/82_2016_3

World Health Organization. Antimicrobial resistance: global report on surveillance 2014. Geneva: WHO; 2014.

The biggest antibiotic-resistant threats in the U.S. [Internet]. Centers for Disease Control and Prevention. 2021 [cited 2021 Dec 1]. Available from: https://www.cdc.gov/drugresistance/biggest-threats.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fdrugresistance%2Fbiggest_threats.html

Downloads

Published

2021-12-27

How to Cite

1.
Mykchaylova O, Poyedіnok N. Antimicrobial Activity of Fomitopsis Officinalis (Vill.) Bondartsev & Singer in Pure Culture. Innov Biosyst Bioeng [Internet]. 2021Dec.27 [cited 2024Apr.15];5(4):220-7. Available from: http://ibb.kpi.ua/article/view/246668

Issue

Section

Articles