Erythrocyte Distribution by Surface Charge: Biophysical Characteristics of Heterogeneity, Diagnostic Significance and Application in Transfusionology and Biobanking

Authors

DOI:

https://doi.org/10.20535/ibb.2025.9.4.343389

Keywords:

erythrocytes, zeta potential, surface charge, biophysics, transfusion, biobanking

Abstract

Long-term storage of erythrocytes, a vital component of modern transfusion medicine, is accompanied by structural, metabolic, and biophysical alterations that reduce their functional activity. Differentiating erythrocytes by surface charge represents a promising approach for assessing viability, predicting post-transfusion behavior, and optimizing storage and biobanking strategies. However, the practical application of zeta potential analysis in clinical transfusion medicine remains insufficiently explored.

To summarize current knowledge on erythrocyte heterogeneity by surface charge, their biophysical properties, diagnostic value, and application prospects in transfusion medicine and biobanking.

A systematic literature search was conducted using PubMed, Scopus, Web of Science, Cochrane Library, Google Scholar, and Clinical Key, focusing on studies addressing erythrocyte biophysics, surface charge parameters, population heterogeneity, zeta potential measurement methods, and clinical applications.

Erythrocyte heterogeneity by surface charge is a fundamental population property shaped by physiological aging, oxidative stress, and membrane–cytoskeleton modifications. Reduced zeta potential is associated with enhanced aggregation, impaired deformability, and decreased microvascular passage. Analysis of zeta potential enables identification of subpopulations with varying levels of damage and prediction of their functional performance after transfusion. In transfusion medicine, this approach may improve transfusion efficiency and safety, while in biobanking it offers opportunities for better selection of cells for long-term storage. Surface charge differentiation also holds promise for predicting erythrocyte shelf life and advancing personalized transfusion strategies.

Integration of zeta potential analysis into laboratory practice could enhance the quality of blood components and support the development of personalized transfusion medicine.

References

D'Alessandro A, Hod EA. Red Blood Cell Storage: From Genome to Exposome Towards Personalized Transfusion Medicine. Transfusion Medicine Reviews. 2023;37(4):150750. DOI: 10.1016/j.tmrv.2023.150750

Belpulsi D, Spitalnik SL, Hod EA. The controversy over the age of blood: what do the clinical trials really teach us? Blood Transfusion. 2017;15(2):112-5. DOI: 10.2450/2017.0328-16

D'Alessandro A, Kriebardis AG, Rinalducci S, Antonelou MH, Hansen KC, Papassideri IS, Zolla L. An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies. Transfusion. 2015;55(1):205-19. DOI: 10.1111/trf.12804

D'Alessandro A, Nemkov T, Yoshida T, Bordbar A, Palsson BO, Hansen KC. Citrate metabolism in red blood cells stored in additive solution-3. Transfusion. 2017;57(2):325-36. DOI: 10.1111/trf.13892

Roussel C, Morel A, Dussiot M, Marin M, Colard M, Fricot-Monsinjon A, et al. Rapid clearance of storage-induced microerythrocytes alters transfusion recovery. Blood. 2021;137(17):2285-98. DOI: 10.1182/blood.2020008563

D'Alessandro A, D'Amici GM, Vaglio S, Zolla L. Time-course investigation of SAGM-stored leukocyte-filtered red bood cell concentrates: from metabolism to proteomics. Haematologica. 2012;97(1):107-15. DOI: 10.3324/haematol.2011.051789

Yoshida T, Prudent M, D'Alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfusion. 2019;17(1):27-52. DOI: 10.2450/2019.0217-18

Rapido F, Brittenham GM, Bandyopadhyay S, La Carpia F, L'Acqua C, McMahon DJ, et al. Prolonged red cell storage before transfusion increases extravascular hemolysis. Journal of Clinical Investigation. 2017;127(1):375-82. DOI: 10.1172/JCI90837

Vallelian F, Buehler PW, Schaer DJ. Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics. Blood. 2022;140(17):1837-44. DOI: 10.1182/blood.2022015596

Youssef LA, Rebbaa A, Pampou S, Weisberg SP, Stockwell BR, Hod EA, Spitalnik SL. Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood. 2018;131(23):2581-93. DOI: 10.1182/blood-2017-12-822619

La Carpia F, Slate A, Bandyopadhyay S, Wojczyk BS, Godbey EA, Francis KP, et al. Red blood cell transfusion-induced non-transferrin-bound iron promotes Pseudomonas aeruginosa biofilms in human sera and mortality in catheterized mice. British Journal of Haematology. 2022;196(4):1105-10. DOI: 10.1111/bjh.17934

La Carpia F, Wojczyk BS, Annavajhala MK, Rebbaa A, Culp-Hill R, D'Alessandro A, et al. Transfusional iron overload and intravenous iron infusions modify the mouse gut microbiota similarly to dietary iron. npj Biofilms and Microbiomes. 2019;5(1):26. DOI: 10.1038/s41522-019-0097-2

Bruun-Rasmussen P, Kragh Andersen P, Banasik K, Brunak S, Johansson PI. Intervening on the storage time of RBC units and its effects on adverse recipient outcomes using real-world data. Blood. 2022;139(25):3647-54. DOI: 10.1182/blood.2022015892

D'Alessandro A, Culp-Hill R, Reisz JA, Anderson M, Fu X, Nemkov T, et al. Heterogeneity of blood processing and storage additives in different centers impacts stored red blood cell metabolism as much as storage time: lessons from REDS-III-Omics. Transfusion. 2019;59(1):89-100. DOI: 10.1111/trf.14979

Nemkov T, Stefanoni D, Bordbar A, Issaian A, Palsson BO, Dumont LJ, et al. Blood donor exposome and impact of common drugs on red blood cell metabolism. JCI Insight. 2021;6(3):e146175. DOI: 10.1172/jci.insight.146175

Piety NZ, Gifford SC, Yang X, Shevkoplyas SS. Quantifying morphological heterogeneity: a study of more than 1 000 000 individual stored red blood cells. Vox Sanguinis. 2015;109(3):221-30. DOI: 10.1111/vox.12277

Barshtein G, Pajic-Lijakovic I, Gural A. Deformability of Stored Red Blood Cells. Frontiers in Physiology. 2021;12:722896. DOI: 10.3389/fphys.2021.722896

Risinger M, Kalfa TA. Red cell membrane disorders: structure meets function. Blood. 2020;136(11):1250-61. DOI: 10.1182/blood.2019000946

D'Alessandro A. Red Blood Cell Omics and Machine Learning in Transfusion Medicine: Singularity Is Near. Transfusion Medicine and Hemotherapy. 2023;50(3):174-83. DOI: 10.1159/000529744

Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et al. An estimation of the number of cells in the human body. Annals of Human Biology. 2013;40(6):463-71. DOI: 10.3109/03014460.2013.807878

Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biology. 2016;14(8):e1002533. DOI: 10.1371/journal.pbio.1002533

Nemkov T, Reisz JA, Xia Y, Zimring JC, D'Alessandro A. Red blood cells as an organ? How deep omics characterization of the most abundant cell in the human body highlights other systemic metabolic functions beyond oxygen transport. Expert Review of Proteomics. 2018;15(11):855-64. DOI: 10.1080/14789450.2018.1531710

Changeux J.-P. 50 years of allosteric interactions: the twists and turns of the models. Nature Reviews Molecular Cell Biology. 2013;14(12):819-29. DOI: 10.1038/nrm3695

Liu H, Zhang Y, Wu H, D'Alessandro A, Yegutkin GG, Song A, et al. Beneficial Role of Erythrocyte Adenosine A2B Receptor-Mediated AMP-Activated Protein Kinase Activation in High-Altitude Hypoxia. Circulation. 2016;134(5):405-21. DOI: 10.1161/CIRCULATIONAHA.116.021311

Song A, Zhang Y, Han L, Yegutkin GG, Liu H, Sun K, et al. Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. Nature Communications. 2017;8:14108. DOI: 10.1038/ncomms14108

Nemkov T, Sun K, Reisz JA, Song A, Yoshida T, Dunham A, et al. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage. Haematologica. 2018;103(2):361-72. DOI: 10.3324/haematol.2017.178608

D'Alessandro A, Xia Y. Erythrocyte adaptive metabolic reprogramming under physiological and pathological hypoxia. Current Opinion in Hematology. 2020;27(3):155-62. DOI: 10.1097/MOH.0000000000000574

Xu P, Chen C, Zhang Y, Dzieciatkowska M, Brown BC, Zhang W, et al. Erythrocyte transglutaminase-2 combats hypoxia and chronic kidney disease by promoting oxygen delivery and carnitine homeostasis. Cell Metabolism. 2022;34(2):299-316.e6. DOI: 10.1016/j.cmet.2021.12.019

Hay A, Nemkov T, Gamboni F, Dzieciatkowska M, Key A, Galbraith M, et al. Sphingosine 1-phosphate has a negative effect on RBC storage quality. Blood Advances. 2023;7(8):1379-93. DOI: 10.1182/bloodadvances.2022008936

Tokumasu F, Ostera GR, Amaratunga C, Fairhurst RM. Modifications in erythrocyte membrane zeta potential by Plasmodium falciparum infection. Experimental Parasitology. 2012;131(2):245-51. DOI: 10.1016/j.exppara.2012.03.005

Moleón Baca JA, Ontiveros Ortega A, Aránega Jiménez A, Granados Principal S. Cells electric charge analyses define specific properties for cancer cells activity. Bioelectrochemistry. 2022;144:108028. DOI: 10.1016/j.bioelechem.2021.108028

Hughes MP, Fry CH, Labeed FH. Cytoplasmic anion/cation imbalances applied across the membrane capacitance may form a significant component of the resting membrane potential of red blood cells. Scientific Reports. 2022;12(1):15005. DOI: 10.1038/s41598-022-19316-z

Berest VP, Borikov OY, Kravchun PG, Leontieva FS, Dielievska VY. Determination of blood group antigens using electrophoresis of erythrocytes incubated with specific antibodies. Separation Science Plus, 2022;5(8):424-30. DOI: 10.1002/sscp.202200017

Silva DCN, Jovino CN, Silva CAL, Fernandes HP, Filho MM, Lucena SC, et al. Optical Tweezers as a New Biomedical Tool to Measure Zeta Potential of Stored Red Blood Cells. PLoS One. 2012;7(2):e31778. DOI: 10.1371/journal.pone.0031778

Panklang N, Techaumnat B, Tanthanuch N, Chotivanich K, Horprathum M, Nakano M. On-Chip Impedance Spectroscopy of Malaria-Infected Red Blood Cells. Sensors. 2024;24(10):3186. DOI: 10.3390/s24103186

Huang Y-X, Wu Z-J, Mehrishi J, Huang B-T, Chen X-Y, Zheng X-J, et al. Human red blood cell aging: correlative changes in surface charge and cell properties. Journal of Cellular and Molecular Medicine. 2011;15(12):2634-42. DOI: 10.1111/j.1582-4934.2011.01310.x

Mehrishi JN. Molecular aspects of the mammalian cell surface. Progress in Biophysics and Molecular Biology. 1972;25:1-68. DOI: 10.1016/0079-6107(72)90013-2

Murphy GJ, Reeves BC, Rogers CA, Rizvi SIA, Culliford L, Angelini GD. Increased Mortality, Postoperative Morbidity, and Cost After Red Blood Cell Transfusion in Patients Having Cardiac Surgery. Circulation. 2007;116(22):2544-52. DOI: 10.1161/CIRCULATIONAHA.107.698977

Spinella PC, Carroll CL, Staff I, Gross R, Mc Quay J, Keibel L, et al. Duration of red blood cell storage is associated with increased incidence of deep vein thrombosis and in hospital mortality in patients with traumatic injuries. Critical Care. 2009;13(5):R151. DOI: 10.1186/cc8050

Koch CG, Li L, Sessler DI, Figueroa P, Hoeltge GA, Mihaljevic T, Blackstone EH. Duration of Red-Cell Storage and Complications after Cardiac Surgery. New England Journal of Medicine. 2008;358(12):1229-39. DOI: 10.1056/NEJMoa070403

Issaian A, Hay A, Dzieciatkowska M, Roberti D, Perrotta S, Darula Z, et al. The interactome of the N-terminus of band 3 regulates red blood cell metabolism and storage quality. Haematologica. 2021;106(11):2971-85. DOI: 10.3324/haematol.2020.278252

Rogers SC, Ge X, Brummet M, Lin X, Timm DD, d'Avignon A, et al. Quantifying dynamic range in red blood cell energetics: Evidence of progressive energy failure during storage. Transfusion. 2021;61(5):1586-99. DOI: 10.1111/trf.16395

Zimna A, Kaczmarska M, Szczesny-Malysiak E, Wajda A, Bulat K, Alcicek FC, et al. An Insight into the Stages of Ion Leakage during Red Blood Cell Storage. International Journal of Molecular Sciences. 2021;22(6):2885. DOI: 10.3390/ijms22062885

Berrevoets MC, Bos J, Huisjes R, Merkx TH, van Oirschot BA, van Solinge WW, et al. Ektacytometry Analysis of Post-splenectomy Red Blood Cell Properties Identifies Cell Membrane Stability Test as a Novel Biomarker of Membrane Health in Hereditary Spherocytosis. Frontiers in Physiology. 2021;12:641384. DOI: 10.3389/fphys.2021.641384

Mykhailova O, Olafson C, Turner TR, DʼAlessandro A, Acker JP. Donor-dependent aging of young and old red blood cell subpopulations: Metabolic and functional heterogeneity. Transfusion. 2020;60(11):2633-46. DOI: 10.1111/trf.16017

Tuo W-W, Wang D, Liang W-J, Huang Y-X. How Cell Number and Cellular Properties of Blood-Banked Red Blood Cells of Different Cell Ages Decline during Storage. PLoS One. 2014;9(8):e105692. DOI: 10.1371/journal.pone.0105692

Hsieh C, Prabhu NCS, Rajashekaraiah V. Age-Related Modulations in Erythrocytes under Blood Bank Conditions. Transfusion Medicine and Hemotherapy. 2019;46(4):257-66. DOI: 10.1159/000501285

Roussel C, Dussiot M, Marin M, Morel A, Ndour PA, Duez J, et al. Spherocytic shift of red blood cells during storage provides a quantitative whole cell-based marker of the storage lesion. Transfusion. 2017;57(4):1007-18. DOI: 10.1111/trf.14015

Picot J, Ndour PA, Lefevre SD, El Nemer W, Tawfik H, Galimand J, et al. A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen. American Journal of Hematology. 2015;90(4):339-45. DOI: 10.1002/ajh.23941

Reisz JA, Wither MJ, Dzieciatkowska M, Nemkov T, Issaian A, Yoshida T, et al. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. Blood. 2016;128(12):e32-e42. DOI: 10.1182/blood-2016-05-714816

D'Alessandro A, Blasi B, D'Amici GM, Marrocco C, Zolla L. Red blood cell subpopulations in freshly drawn blood: application of proteomics and metabolomics to a decades-long biological issue. Blood Transfusion. 2013;11(1):75-87. DOI: 10.2450/2012.0164-11

Liadov D, Berest V. Discriminating Cells by Membrane Surface Charge May Improve Long-Term Refrigerated Storage of Red Blood Cells. Problems of Cryobiology and Cryomedicine. 2023;33(4):287. DOI: 10.15407/cryo33.04.287

Gevi F, D'Alessandro A, Rinalducci S, Zolla L. Alterations of red blood cell metabolome during cold liquid storage of erythrocyte concentrates in CPD-SAGM. Journal of Proteomics. 2012;76:168-80. DOI: 10.1016/j.jprot.2012.03.012

Nemkov T, Qadri SM, Sheffield WP, D'Alessandro A. Decoding the metabolic landscape of pathophysiological stress-induced cell death in anucleate red blood cells. Blood Transfusion. 2020;18(2):130-42. DOI: 10.2450/2020.0256-19

D'Alessandro A, Reisz JA, Zhang Y, Gehrke S, Alexander K, Kanias T, et al. Effects of aged stored autologous red blood cells on human plasma metabolome. Blood Advances. 2019;3(6):884-96. DOI: 10.1182/bloodadvances.2018029629

Almizraq RJ, Seghatchian J, Holovati JL, Acker JP. Extracellular vesicle characteristics in stored red blood cell concentrates are influenced by the method of detection. Transfusion and Apheresis Science. 2017;56(2):254-60. DOI: 10.1016/j.transci.2017.03.007

Tran LNT, González-Fernández C, Gomez-Pastora J. Impact of Different Red Blood Cell Storage Solutions and Conditions on Cell Function and Viability: A Systematic Review. Biomolecules. 2024;14(7):813. DOI: 10.3390/biom14070813

Isiksacan Z, William N, Senturk R, Boudreau L, Wooning C, Castellanos E, et al. Extended supercooled storage of red blood cells. Communications Biology. 2024;7(1):765. DOI: 10.1038/s42003-024-06463-4

Hess JR. An update on solutions for red cell storage. Vox Sanguinis. 2006;91(1):13-9. DOI: 10.1111/j.1423-0410.2006.00778.x

Downloads

Published

2025-11-24

How to Cite

1.
Liadov D, Berest V, Liadova T, Hladkykh F. Erythrocyte Distribution by Surface Charge: Biophysical Characteristics of Heterogeneity, Diagnostic Significance and Application in Transfusionology and Biobanking . Innov Biosyst Bioeng [Internet]. 2025Nov.24 [cited 2026Jan.11];9(4):3-15. Available from: https://ibb.kpi.ua/article/view/343389

Issue

Section

Articles