Effects of Metformin and Losartane on Hepatic Cytochromes CYP3А, CYP2С and CYP2Е1 Functioning at Metabolic Syndrome in Rats

Authors

DOI:

https://doi.org/10.20535/ibb.2025.9.3.337336

Keywords:

metabolic syndrome, metformin, losartan, CYP450

Abstract

Background. The study of drugs' possible metabolic and biological interactions in preclinical models is a necessary condition for improving the development of most combinations of medicines.

Objective. The aim of our present study was to study the joint effects of metformin and losartan on hepatic CYP3А, CYP2С, and CYP2Е1 mRNA expression, their marker enzymes, liver antioxidant system and lipid peroxidation of adult rats with metabolic syndrome.

Methods. Wistar albino male rats were divided into 5 groups (8 animals in each group): 1 – Control (intact rats), 2 – MS (rats with MS), 3 – MS + metformin (rats with MS and metformin (266.0 mg/kg of body weight, per os, 60 days)), 4 – MS + losartan (rats with MS and losartan (4.43 mg/kg of body weight, per os, 60 days)), 5 – MS + metformin + losartan (rats with MS and metformin and losartan treatment). MS was induced by full replacement of drinking water with 20% fructose solution (200 g/l). Metformin and losartan doses were calculated based on the species sensitivity coefficient. After 60 days of MS modeling, investigation of rat liver CYP3А, CYP2С and CYP2Е1 mRNA expression, their marker enzymes activities, as well as lipid peroxidation parameters were carried out.

Results. It was demonstrated that combined administration of metformin and losartan affects the levels of CYP2E1, CYP2C23 and CYP3A2 genes expression, diclofenac hydroxylase activity, reduced glutathione contents, and the activity of lipid peroxidation processes.

Conclusions. Our experiments showed that the noted changes were not the simple summation of the effects of metformin and losartan administered separately, but in most cases were determined only by losartan. Obtained results indicate the need for caution in the simultaneous prescription of metformin with losartan.

References

Bijnsdorp IV, Giovannetti E, Peters GJ. Analysis of Drug Interactions. In: Cancer Cell Culture: Methods and Protocols, vol. 731. Totowa, NJ: Humana Press; 2011, pp. 421-34. DOI: 10.1007/978-1-61779-080-5_34

Shenfield GM. Fixed Combination Drug Therapy. Drugs. 1982;23(6):462-80. DOI: 10.2165/00003495-198223060-00003

Sopel ОV, Levchuk ОО, Denefil OV. The effect of inositol on the content of oxidative modified proteins in the liver and heart of different sexes rats with metabolic associated steatotic liver disease. The Journal of V. N. Karazin Kharkiv National University, Series "Medicine". 2024;(49):172-84. DOI: 10.26565/2313-6693-2024-49-05

Baqey DAA-SA, Sultan RS, Hamoode RH, Al-Rubaii BAL. Metabolic markers of insulin resistance in Iraqi type 2 diabetes mellitus patients infected with H. pylori. Eastern Ukrainian Medical Journal. 2025;13(2):417-23. DOI: 10.21272/eumj.2025;13(2):417-423

Marushko YY, Mankovskyi GB. Algorithm for the Management of Patients with Ischemic Heart Disease and Cardio-Renal-Metabolic Syndrome. Ukrainian Journal of Cardiovascular Surgery. 2025;33(1):48-53. DOI: 10.63181/ujcvs.2025.33(1).48-53

Feroz Z, Khan RA, Afroz S. Cummulative toxicities on lipid profile and glucose following administration of anti-epileptic, anti-hypertensive, anti-diabetic and anti-arrhythmic drugs. Pakistan Journal of Pharmaceutical Sciences. 2011;24(1):47-51.

Choi YH, Lee MG. Effects of enzyme inducers and inhibitors on the pharmacokinetics of metformin in rats: involvement of CYP2C11, 2D1 and 3A1/2 for the metabolism of metformin. British Journal of Pharmacology. 2006;149(4):424-30. DOI: 10.1038/sj.bjp.0706875

Iwamura A, Fukami T, Hosomi H, Nakajima M, Yokoi T. CYP2C9-Mediated Metabolic Activation of Losartan Detected by a Highly Sensitive Cell-Based Screening Assay. Drug Metabolism and Disposition. 2011;39(5):838-46. DOI: 10.1124/dmd.110.037259

Choi D-H, Li C, Choi J-S. Effects of myricetin, an antioxidant, on the pharmacokinetics of losartan and its active metabolite, EXP-3174, in rats: possible role of cytochrome P450 3A4, cytochrome P450 2C9 and P-glycoprotein inhibition by myricetin. Journal of Pharmacy and Pharmacology. 2010;62(7):908-14. DOI: 10.1211/jpp.62.07.0012

Galappatthy P, Ranasinghe P, Liyanage CK, Wijayabandara MS, Mythily S, Jayakody RL. WHO/INRUD Core drug use indicators and commonly prescribed medicines: a National Survey from Sri Lanka. BMC Pharmacology and Toxicology. 2021;22(1):67. DOI: 10.1186/s40360-021-00535-5

Abdulla MH, Sattar MA, Abdullah NA, Hye Khan MA, Anand Swarup KRL, Johns EJ. The contribution of α1B-adrenoceptor subtype in the renal vasculature of fructose-fed Sprague-Dawley rats. European Journal of Nutrition. 2011;50(4):251-60. DOI: 10.1007/s00394-010-0133-8

Guidance for Industry and Reviewers: Estimating the Safe Starting Dose in Clinical Trials for Therapeutics in Adult Healthy Volunteers. USDHHS, FDA, CDER, CBER. 2002.

Kamath SA, Kummerow FA, Narayan KA. A simple procedure for the isolation of rat liver microsomes. FEBS Letters. 1971;17(1):90-2. DOI: 10.1016/0014-5793(71)80571-9

Jäger W, Correia MA, Bornheim LM, Mahnke A, Hanstein WG, Xue L, Benet LZ. Ethynylestradiol-Mediated Induction of Hepatic CYP3A9 in Female Rats: Implication for Cyclosporine Metabolism. Drug Metabolism and Disposition. 1999;27(12):1505-11. DOI: 10.1016/S0090-9556(24)14963-X

Imaoka S, Hashizume T, Funae Y. Localization of rat Cytochrome P450 in Various Tissues and Comparison of Arachidonic Acid Metabolism by Rat P450 with that by Human P450 Orthologs. Drug Metabolism and Pharmacokinetics. 2005;20(6):478-84. DOI: 10.2133/dmpk.20.478

Koop DR. Inhibition of ethanol-inducible cytochrome P450IIE1 by 3-amino-1,2,4-triazole. Chemical Research in Toxicology. 1990;3(4):377-83. DOI: 10.1021/tx00016a017

Wang RW, Newton DJ, Scheri TD, Lu AY. Human cytochrome P450 3A4-catalyzed testosterone 6 beta-hydroxylation and erythromycin N-demethylation. Competition during catalysis. Drug Metabolism and Disposition. 1997;25(4):502-7.

Nekrasova LV, Russkikh YaV, Novikov AV, Krasnov NV, Zhakovskaya ZA. Application of the method (HPLC-tandem MS high resolution) for the determination of medicinal compounds in natural water. Scientific Instrument Engineering. 2010;20(4):59-66.

Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry. 1974;249(22):7130-9. DOI: 10.1016/S0021-9258(19)42083-8

Costa LG, Hodgson E, Lawrence DA, Ozolins TR, Reed DJ, Greenlee WF (eds.). Current protocols in toxicology. New York: John Wiley & Sons Inc; 2005. 2758 p.

Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical Biochemistry. 1968;25(1):192-205. DOI: 10.1016/0003-2697(68)90092-4

Lankford SM, Bai SA, Goldstein JA. Cloning of Canine Cytochrome P450 2E1 cDNA: Identification and Characterization of Two Variant Alleles. Drug Metabolism and Disposition. 2000;28(8):981-6. DOI: 10.1016/S0090-9556(24)15173-2

Bondarenko AV, Chumachenko IV, Dotsenko NV, Bondarenko OV, Katsapov DV, Neskoromna NV, et al. MBL encoding genes in gram-negative eskape pathogens from the bloodstream of ICU COVID-19 patients. The Odessa Medical Journal. 2024;(5):40-4. DOI: 10.32782/2226-2008-2024-5-6

Stalnaya ID, Garishvili TG. Method for determination of malonic dialdehyde using thiobarbituric acid. In: Orekhovich VN, editor. Modern methods in biochemistry. Мoscow: Меdicine; 1977, pp. 66-8.

Glantz SA. Primer of Biostatistics. 7th edition. New York: McGraw Hill/Medical; 2012, 320 p.

Brill MJE, Diepstraten J, van Rongen A, van Kralingen S, van den Anker JN, Knibbe CAJ. Impact of Obesity on Drug Metabolism and Elimination in Adults and Children. Clinical Pharmacokinetics. 2012;51(5):277-304. DOI: 10.2165/11599410-000000000-00000

Oh SJ, Choi JM, Yun KU, Oh JM, Kwak HC, Oh J-G, et al. Hepatic expression of cytochrome P450 in type 2 diabetic Goto-Kakizaki rats. Chemico-Biological Interactions. 2012;195(3):173-9. DOI: 10.1016/j.cbi.2011.12.010

Baillie TA, Rettie AE. Role of Biotransformation in Drug-Induced Toxicity: Influence of Intra- and Inter-Species Differences in Drug Metabolism. Drug Metabolism and Pharmacokinetics. 2011;26(1):15-29. DOI: 10.2133/dmpk.dmpk-10-rv-089

Hardy KD, Wahlin MD, Papageorgiou I, Unadkat JD, Rettie AE, Nelson SD. Studies on the Role of Metabolic Activation in Tyrosine Kinase Inhibitor-Dependent Hepatotoxicity: Induction of CYP3A4 Enhances the Cytotoxicity of Lapatinib in HepaRG Cells. Drug Metabolism and Disposition. 2014;42(1):162-71. DOI: 10.1124/dmd.113.054817

Manthalkar L, Ajazuddin, Bhattacharya S. Evidence-based capacity of natural cytochrome enzyme inhibitors to increase the effectivity of antineoplastic drugs. Discover Oncology. 2022;13(1):142. DOI: 10.1007/s12672-022-00605-y

Guo J, Zhu X, Badawy S, Ihsan A, Liu Z, Xie C, Wang X. Metabolism and Mechanism of Human Cytochrome P450 Enzyme 1A2. Current Drug Metabolism. 2021;22(1):40-9. DOI: 10.2174/1389200221999210101233135

Villeneuve J-P, Pichette V. Cytochrome P450 and Liver Diseases. Current Drug Metabolism. 2004;5(3):273-82. DOI: 10.2174/1389200043335531

Choi YH, Lee U, Lee BK, Lee MG. Pharmacokinetic interaction between itraconazole and metformin in rats: competitive inhibition of metabolism of each drug by each other via hepatic and intestinal CYP3A1/2. British Journal of Pharmacology. 2010;161(4):815-29. DOI: 10.1111/j.1476-5381.2010.00913.x

Bae J-w, Choi C-i, Kim M-j, Oh D-h, Keum S-k, Park J-i, et al. Frequency of CYP2C9 alleles in Koreans and their effects on losartan pharmacokinetics. Acta Pharmacologica Sinica. 2011;32(10):1303-8. DOI: 10.1038/aps.2011.100

Bondarenko LB, Shayakhmetova GM, Voronina AK, Kovalenko VM. Age-dependent features of CYP3A, CYP2C, and CYP2E1 functioning at metabolic syndrome. Journal of Basic and Clinical Physiology and Pharmacology. 2016;27(6):603-10. DOI: 10.1515/jbcpp-2016-0012

Bozcaarmutlu A, Sapmaz C, Bozdoğan Ö, Kükner A, Kılınç L, Kaya ST, et al. The effect of co-administration of berberine, resveratrol, and glibenclamide on xenobiotic metabolizing enzyme activities in diabetic rat liver. Drug and Chemical Toxicology. 2022;45(3):990-8. DOI: 10.1080/01480545.2020.1802475

Kvitne KE, Åsberg A, Johnson LK, Wegler C, Hertel JK, Artursson P, et al. Impact of type 2 diabetes on in vivo activities and protein expressions of cytochrome P450 in patients with obesity. Clinical and Translational Science. 2022;15(11):2685-96. DOI: 10.1111/cts.13394

Arinç E, Arslan S, Adali O. Differential effects of diabetes on CYP2E1 and CYP2B4 proteins and associated drug metabolizing enzyme activities in rabbit liver. Archives of Toxicology. 2005;79(8):427-33. DOI: 10.1007/s00204-005-0654-8

Khatsenko OG, Sindhu RK, Kikkawa Y. Undernutrition during hyperoxic exposure induces CYP2E1 in rat liver. Archives of Toxicology. 1997;71(11):684-9. DOI: 10.1007/s002040050445

Gravel S, Chiasson J-L, Turgeon J, Grangeon A, Michaud V. Modulation of CYP450 Activities in Patients With Type 2 Diabetes. Clinical Pharmacology & Therapeutics. 2019;106(6):1280-9. DOI: 10.1002/cpt.1496

Krausova L, Stejskalova L, Wang H, Vrzal R, Dvorak Z, Mani S, Pavek P. Metformin suppresses pregnane X receptor (PXR)-regulated transactivation of CYP3A4 gene. Biochemical Pharmacology. 2011;82(11):1771-80. DOI: 10.1016/j.bcp.2011.08.023

Stearns RA, Chakravarty PK, Chen R, Chiu SH. Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily members. Drug Metabolism and Disposition. 1995;23(2):207-15. DOI: 10.1016/S0090-9556(25)06520-1

Shou M, Dai R, Cui D, Korzekwa KR, Baillie TA, Rushmore TH. A Kinetic Model for the Metabolic Interaction of Two Substrates at the Active Site of Cytochrome P450 3A4. Journal of Biological Chemistry. 2001;276(3):2256-62. DOI: 10.1074/jbc.M008799200

Yang M-X, Cederbaum AI. Glycerol Increases Content and Activity of Human Cytochrome P‐4502E1 in a Transduced HepG2 Cell Line by Protein Stabilization. Alcoholism: Clinical and Experimental Research. 1997;21(2):340-7. DOI: 10.1111/j.1530-0277.1997.tb03770.x

Chukwunonso Obi B, Chinwuba Okoye T, Okpashi VE, Nonye Igwe C, Olisah Alumanah E. Comparative Study of the Antioxidant Effects of Metformin, Glibenclamide, and Repaglinide in Alloxan-Induced Diabetic Rats. Journal of Diabetes Research. 2016;2016:1635361. DOI: 10.1155/2016/1635361

Victor VM, Rovira-Llopis S, Bañuls C, Diaz-Morales N, Castelló R, Falcón R, et al. Effects of metformin on mitochondrial function of leukocytes from polycystic ovary syndrome patients with insulin resistance. European Journal of Endocrinology. 2015;173(5):683-91. DOI: 10.1530/EJE-15-0572

Chao Y-M, Wu KLH, Tsai P-C, Tain Y-L, Leu S, Lee W-C, Chan JYH. Anomalous AMPK-regulated angiotensin AT1R expression and SIRT1-mediated mitochondrial biogenesis at RVLM in hypertension programming of offspring to maternal high fructose exposure. Journal of Biomedical Science. 2020;27(1):68. DOI: 10.1186/s12929-020-00660-z

Chan JYH, Chan SHH. Differential impacts of brain stem oxidative stress and nitrosative stress on sympathetic vasomotor tone. Pharmacology & Therapeutics. 2019;201:120-36. DOI: 10.1016/j.pharmthera.2019.05.015

Ghosh J. Fundamental Concepts of Applied Chemistry. Ram Nagar, New Delhi: S. Chand & Company Ltd; 2006, 433 p.

Losartan Potassium 25 MG - losartan potassium tablet, film coated. Losartan Potassium 50 MG - losartan potassium tablet, film coated. Losartan Potassium 100 MG - losartan potassium tablet, film coated. Dailymed.nlm.nih.gov. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=a8817f22-8478-49b9-8354-ab27ca222c6b.

Nagaraju B, Anilkumar KV. Pharmacodynamic and pharmacokinetic interaction of losartan with glimepiride-metformin combination in rats and rabbits. Indian Journal of Pharmacology. 2021;53(6):465-70. DOI: 10.4103/ijp.IJP_845_19

Downloads

Published

2025-08-13

How to Cite

1.
Bondarenko L, Shayakhmetova G, Voronina A, Kovalenko V. Effects of Metformin and Losartane on Hepatic Cytochromes CYP3А, CYP2С and CYP2Е1 Functioning at Metabolic Syndrome in Rats. Innov Biosyst Bioeng [Internet]. 2025Aug.13 [cited 2025Oct.8];9(3):33-4. Available from: https://ibb.kpi.ua/article/view/337336