Assessing the Ethanologenic Potential of Xylose-Fermenting Yeasts Scheffersomyces stipitis UCM Y-2810

Authors

  • Ihor Hretskyi D.K. Zabolotny Institute of Microbiology and Virology of NAS of Ukraine; Kyiv National University of Technologies and Design, Ukraine https://orcid.org/0000-0001-8646-0574
  • Olena Mokrousova Kyiv National University of Technologies and Design, Ukraine
  • Anna Oleshko Kyiv National University of Technologies and Design, Ukraine https://orcid.org/0000-0001-9328-7730
  • Olena Budyakova Kyiv National University of Technologies and Design, Ukraine
  • Daria Antonenko D.K. Zabolotny Institute of Microbiology and Virology of NAS of Ukraine, Ukraine
  • Marina Fomina D.K. Zabolotny Institute of Microbiology and Virology of NAS of Ukraine, Ukraine

DOI:

https://doi.org/10.20535/ibb.2025.9.1.311267

Keywords:

lignocellulosic biomass, xylose-fermenting yeasts, Scheffersomyces stipites, 2G bioethanol

Abstract

Background. Enhancing the efficiency of second-generation (2G) bioethanol production from lignocellulosic biomass is crucial for advancing sustainable biofuel technologies. However, the conversion of biomass into 2G bioethanol faces substantial challenges, necessitating a comprehensive investigation of microbial agents.

Objective. To evaluate the effect of glucose and xylose concentrations, as well as cultivation duration, on the efficiency of ethanologenesis using the model organism Scheffersomyces stipitis UCM Y-2810, and to determine the optimal conditions for achieving maximum ethanol yield.

Methods. The effects of glucose and xylose concentrations and cultivation time on ethanologenesis efficiency were evaluated using S. stipitis UCM Y-2810 as a model organism. The experimental design included three levels of factors: xylose concentration (3, 16.5, and 30 g/l), glucose concentration (1, 5.5, and 10 g/l), and cultivation durations (1, 2, and 3 days). Statistical analysis of the experimental data was conducted using a three-factor, three-level Box–Behnken design.

Results. Under submerged cultivation of the strain of S. stipitis UCM Y-2810 in model media, optimization of the ethanologenesis process resulted in a maximum ethanol yield of 7.74 g/l. The optimal conditions for this yield were identified as follows: xylose concentration of 16.5 g/l, glucose concentration of 7.75 g/l, and a cultivation time of 3 days.

Conclusions. The application of the Box–Behnken design revealed that the statistically significant factors influencing ethanologenesis efficiency were xylose concentration, yeast cultivation duration, and the linear-quadratic interaction between these two factors.

References

Kazemi Shariat Panahi H, Dehhaghi M, Kinder JE, Ezeji TC. A review on green liquid fuels for the transportation sector: a prospect of microbial solutions to climate change. Biofuel Research Journal. 2019;6(3):995-1024. DOI: 10.18331/BRJ2019.6.3.2

Parakh PD, Nanda S, Kozinski JA. Eco-friendly Transformation of Waste Biomass to Biofuels. Current Biochemical Engineering. 2020;6(2):120-34. DOI: 10.2174/2212711906999200425235946

Permata DA, Kasim A, Asben A, Yusniwati. Delignification of lignocellulosic biomass. World Journal of Advanced Research and Reviews. 2021;12(2);462-9. DOI: 10.30574/wjarr.2021.12.2.0618

Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Bioethanol production from agricultural wastes: An overview. Renewable Energy. 2012;37(1):19-27. DOI: 10.1016/j.renene.2011.06.045

Haji Esmaeili SA, Szmerekovsky J, Sobhani A, Dybing A, Peterson TO. Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers. Energy Policy. 2020;138:111222. DOI: 10.1016/j.enpol.2019.111222

Osman AI, Mehta N, Elgarahy AM, Al-Hinai A, Al-Muhtaseb AH, Rooney DW. Conversion of biomass to biofuels and life cycle assessment: a review. Environmental Chemistry Letters. 2021;19(6):4075-118. DOI: 10.1007/s10311-021-01273-0

Broda M, Yelle DJ, Serwańska K. Bioethanol Production from Lignocellulosic Biomass - Challenges and Solutions. Molecules. 2022;27(24):8717. DOI: 10.3390/molecules27248717

Sharma S, Arora A. Tracking strategic developments for conferring xylose utilization/fermentation by Saccharomyces cerevisiae. Annals of Microbiology. 2020;70(1):50. DOI: 10.1186/s13213-020-01590-9

Veras HCT, Parachin NS, Almeida JRM. Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microbial Cell Factories. 2017;16(1):153. DOI: 10.1186/s12934-017-0766-x

Novelli Poisson GF, Juárez ÁB, Noseda DG, Ríos de Molina MC, Galvagno MA. Adaptive Evolution Strategy to Enhance the Performance of Scheffersomyces stipitis for Industrial Cellulosic Ethanol Production. Industrial Biotechnology. 2020;16(5):281-9. DOI: 10.1089/ind.2020.0008

Panchal CJ, Bast L, Russell I, Stewart GG. Repression of xylose utilization by glucose in xylose-fermenting yeasts. Canadian Journal of Microbiology. 1988;34(12):1316-20. DOI: 10.1139/m88-230

Ianieva OD, Fomina MO, Babich TV, Dudka GP, Pidgorskyi VS. Evaluation of Non-Conventional Yeasts Isolated from Rotten Wood for Hydrolytic Activities and Xylose Fermentation. Mikrobiolohichnyi Zhurnal. 2022;84(4):88-97. DOI: 10.15407/microbiolj84.04.088

Fomina M, Yurieva O, Pavlychenko A, Syrchin S, Filipishena O, Polishchuk L, et al. Application of natural fungi in bioconversion of lignocellulosic waste to second-generation ethanol. Biosystems Diversity. 2024;32(1):45-59. DOI: 10.15421/012405

Saulawa ZI, Nura L, Bala M, Imam AA. Optimization of Some Fermentation Conditions for Bioethanol Production from Yam Peels (Dioscorea rotundata) Using Box-Behnken Design (BBD). Journal of Advances in Microbiology. 2023;23(9):42-53. DOI: 10.9734/jamb/2023/v23i9750

Thuy NM, Tien VQ, Giau TN, Hao HV, Thanh NV, Thanh NN, et al. Box-Behnken design to determine optimal fermentation conditions for apple-fortified mulberry wine using Saccharomyces bayanus. Food Science and Technology. 2023;43:e00036. DOI: 10.5327/fst.00036

Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS. Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochemistry. 2006;41(11):2333-6. DOI: 10.1016/j.procbio.2006.05.004

Kurtzman CP. Scheffersomyces Kurtzman & M. Suzuki (2010). In: The Yeasts. 5th ed. London: Elsevier, 2011, p. 773-7. DOI: 10.1016/B978-0-444-52149-1.00065-3

Downloads

Published

2025-04-12

How to Cite

1.
Hretskyi I, Mokrousova O, Oleshko A, Budyakova O, Antonenko D, Fomina M. Assessing the Ethanologenic Potential of Xylose-Fermenting Yeasts Scheffersomyces stipitis UCM Y-2810. Innov Biosyst Bioeng [Internet]. 2025Apr.12 [cited 2025Aug.2];9(1):45-53. Available from: https://ibb.kpi.ua/article/view/311267

Issue

Section

Articles