Effect of Chemical and Physical Factors on Microalgae Metabolism

Authors

DOI:

https://doi.org/10.20535/ibb.2025.9.3.306265

Keywords:

microalgae, heavy metal ions, lighting, ultrasound, UV irradiation, gamma radiation, carotenoids, chlorophylls, fatty acids

Abstract

Background. Modifying the metabolism of microalgae through chemical and physical environmental factors to obtain useful substances.

Objective. To summarize literature data on the effects of elevated concentrations of heavy metal ions on the biosynthesis of carotenoids, chlorophylls, and unsaturated fatty acids in microalgae, and to analyze the influence of lighting regimes as well as ultrasonic, ultraviolet, and gamma irradiation on the performance of various microalgae species.

Methods. A review and synthesis of literature data on the impact of increased heavy metal ion concentrations, lighting conditions, and exposure to ultrasound, UV, and gamma radiation on both the performance of different microalgae species and the biosynthesis of carotenoids, chlorophylls, and unsaturated fatty acids.

Results. The influence of physical and chemical environmental factors on nutrient biosynthesis in microalgae is species-specific. Elevated metal ion concentrations may either stimulate or inhibit the biosynthesis of various metabolites, including lipids, carotenoids, chlorophylls, proteins, and carbohydrates. Variations in light spectrum and intensity, as well as the frequency and duration of exposure to ultrasound, UV, and gamma radiation, can alter the metabolic pathways of microalgae in a species-dependent manner.

Conclusions. The metabolism of microalgae is influenced by cultivation parameters, species type, and the composition of the growth environment. Optimizing microalgae cultivation by adjusting physical and chemical abiotic factors for enhanced nutrient production requires a species-specific approach. The presented analysis forms a foundation for further research and the development of technological solutions aimed at boosting the biosynthesis of valuable compounds in microalgae.

References

Patel AK, Tambat VS, Chen CW, Chauhan AS, Kumar P, Vadrale AP, et al. Recent advancements in astaxanthin production from microalgae: A review. Bioresour Technol 2022;364:128030. DOI: 10.1016/j.biortech.2022.128030

Cunha E, Sousa V, Geada P, Teixeira JA, Vicente AA, Dias O. Systems biology’s role in leveraging microalgal biomass potential: Current status and future perspectives. Algal Res. 2023;69:102963. DOI: 10.1016/j.algal.2022.102963

Udayan A, Pandey AK, Sirohi R, Sreekumar N, Sang BI, Sim SJ, et al. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochem Rev. 2023;22:833-60. DOI: 10.1007/s11101-021-09784-y

Bibi F, Jamal A, Huang Z, Urynowicz M, Ishtiaq Ali M. Advancement and role of abiotic stresses in microalgae biorefinery with a focus on lipid production. Fuel. 2022;316:123192. DOI: 10.1016/j.fuel.2022.123192

Singh RP, Yadav P, Kumar I, Solanki MK, Roychowdhury R, Kumar A, et al. Advancement of abiotic stresses for microalgal lipid production and its bioprospecting into sustainable biofuels. Sustainability. 2023;15:13678. DOI: 10.3390/su151813678

Suparmaniam U, Lam MK, Lim JW, Yusup S, Tan IS, Lau SY, et al. Influence of environmental stress on microalgae growth and lipid profile: a systematic review. Phytochem Rev. 2023;22:879-901. DOI: 10.1007/s11101-022-09810-7

Wu M, Zhu R, Lu J, Lei A, Zhu H, Hu Z, et al. Effects of different abiotic stresses on carotenoid and fatty acid metabolism in the green microalga Dunaliella salina Y6. Ann Microbiol. 2020;70:48. DOI: 10.1186/s13213-020-01588-3

Eroglu E, Eggers PK, Winslade M, Smith SM, Raston CL. Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green Chem. 2013;15:3155. DOI: 10.1039/c3gc41291a

Hamidkhani A, Asgarani E, Saboora A, Hejazi MA. Comparison of selenium-induced antioxidant responses and bioaccumulation in two strains of the halotolerant alga Dunaliella salina. Botanica Marina. 2021;64:275-87. DOI: 10.1515/bot-2020-0078

Mayasari E, Raya I, Natsir H. Effect of Fe2+and Mn2+ addition on growth and β-carotene production of Dunaliella salina. J Phys Conf Ser. 2018;979:012012. DOI: 10.1088/1742-6596/979/1/012012

Mahlangu D, Mphahlele K, De Paola F, Mthombeni NH. Microalgae-mediated biosorption for effective heavy metals removal from wastewater: A review. Water (Basel). 2024;16:718. DOI: 10.3390/w16050718

Liang SXT, Wong LS, Dhanapal ACTA, Djearamane S. Toxicity of metals and metallic nanoparticles on nutritional properties of microalgae. Water Air Soil Pollut. 2020;231:52. DOI: 10.1007/s11270-020-4413-5

Patelou M, Infante C, Dardelle F, Randewig D, Kouri ED, Udvardi MK, et al. Transcriptomic and metabolomic adaptation of Nannochloropsis gaditana grown under different light regimes. Algal Res. 2020;45:101735. DOI: 10.1016/j.algal.2019.101735

Shi TQ, Wang LR, Zhang ZX, Sun XM, Huang H. Stresses as first-line tools for enhancing lipid and carotenoid production in microalgae. Front Bioeng Biotechnol. 2020;8. DOI: 10.3389/fbioe.2020.00610

Chini Zittelli G, Mugnai G, Milia M, Cicchi B, Silva Benavides AM, Angioni A, et al. Effects of blue, orange and white lights on growth, chlorophyll fluorescence, and phycocyanin production of Arthrospira platensis cultures. Algal Res. 2022;61:102583. DOI: 10.1016/j.algal.2021.102583

Fratelli C, Burck M, Amarante MCA, Braga ARC. Antioxidant potential of nature's "something blue": Something new in the marriage of biological activity and extraction methods applied to C-phycocyanin. Trends Food Sci Technol. 2021;107:309-23. DOI: 10.1016/j.tifs.2020.10.043

Luimstra VM, Schuurmans JM, Verschoor AM, Hellingwerf KJ, Huisman J, Matthijs HCP. Blue light reduces photo-synthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynth Res. 2018;138:177-89. DOI: 10.1007/s11120-018-0561-5

Sivaramakrishnan R, Incharoensakdi A. Enhancement of lipid production in Synechocystis sp. PCC 6803 overexpressing glycerol kinase under oxidative stress with glycerol supplementation. Bioresour Technol. 2018;267:532-40. DOI: 10.1016/j.biortech.2018.07.058

Ren HY, Zhu JN, Kong F, Xing D, Zhao L, Ma J, et al. Ultrasonic enhanced simultaneous algal lipid production and nutrients removal from non-sterile domestic wastewater. Energy Convers Manag. 2019;180:680-8. DOI: 10.1016/j.enconman.2018.11.028

Seo SH, Srivastava A, Han MS, Lee HG, Oh HM. Maximizing biomass and lipid production in Ettlia sp. by ultraviolet stress in a continuous culture. Bioresour Technol. 2019;288:121472. DOI: 10.1016/j.biortech.2019.121472

Lobus NV, Kulikovskiy MS. The co-evolution aspects of the biogeochemical role of phytoplankton in aquatic ecosystems: A review. Biology (Basel). 2023;12:92. DOI: 10.3390/biology12010092

Miazek K, Iwanek W, Remacle C, Richel A, Goffin D. Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: A review. Int J Mol Sci. 2015;16:23929-69. DOI: 10.3390/ijms161023929

Sunda WG. Feedback Interactions between trace metal nutrients and phytoplankton in the ocean. Front Microbiol. 2012;3. DOI: 10.3389/fmicb.2012.00204

Blaby-Haas CE, Merchant SS. Regulating cellular trace metal economy in algae. Curr Opin Plant Biol. 2017;39:88-96. DOI: 10.1016/j.pbi.2017.06.005

Monteiro CM, Castro PML, Malcata FX. Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnol Prog. 2012;28:299-311. DOI: 10.1002/btpr.1504

Mohammadi A, Mahmoudnia F. Biological treatment of heavy metals with algae. In: Heavy metals - recent advances. IntechOpen; 2023. DOI: 10.5772/intechopen.110301

Cassier-Chauvat C, Chauvat F. Responses to oxidative and heavy metal stresses in cyanobacteria: Recent advances. Int J Mol Sci. 2014;16:871-86. DOI: 10.3390/ijms16010871

Sears ME. Chelation: Harnessing and enhancing heavy metal detoxification—A review. Sci World J. 2013;2013:1-13. DOI: 10.1155/2013/219840

Coulombier N, Jauffrais T, Lebouvier N. Antioxidant compounds from microalgae: A review. Mar Drugs. 2021;19:549. DOI: 10.3390/md19100549

Patel AK, Albarico FPJB, Perumal PK, Vadrale AP, Nian CT, Chau HTB, et al. Algae as an emerging source of bioactive pigments. Bioresour Technol. 2022;351:126910. DOI: 10.1016/j.biortech.2022.126910

Ouyang H, Kong X, He W, Qin N, He Q, Wang Y, et al. Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris. Chin Sci Bull. 2012;57:3363-70. DOI: 10.1007/s11434-012-5366-x

Shing WL, Jiong FW, Hee CW, Hock OG, Djearamane S. Changes of carotenoids in Haematococcus pluvialis with the presence of light metals. Ecol Environ Conserv. 2022;28:13-13. DOI: 10.53550/EEC.2022.v28i01s.013

Yang J, Cao J, Xing G, Yuan H. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol. 2015;175:537-44. DOI: 10.1016/j.biortech.2014.10.124

Rocha GS, Parrish CC, Espíndola ELG. Shifts in photosynthetic parameters and lipid production of the freshwater microalga Selenastrum gracile (Chlorophyceae) under cadmium exposure. J Appl Phycol. 2020;32:4047-55. DOI: 10.1007/s10811-020-02255-5

Reis LL, Alho LO, Abreu CB, Melão MG. Using multiple endpoints to assess the toxicity of cadmium and cobalt for chlorophycean Raphidocelis subcapitata. Ecotoxicol Environ Saf. 2021;208:111628. DOI: 10.1016/j.ecoenv.2020.111628

Rana MS, Bhushan S, Sudhakar DR, Prajapati SK. Effect of iron oxide nanoparticles on growth and biofuel potential of Chlorella spp. Algal Res. 2020;49:101942. DOI: 10.1016/j.algal.2020.101942

Nanda M, Jaiswal KK, Kumar V, Vlaskin MS, Gautam P, Bahuguna V, et al. Micro-pollutant Pb(II) mitigation and lipid induction in oleaginous microalgae Chlorella sorokiniana UUIND6. Environ Technol Innov. 2021;23:101613. DOI: 10.1016/j.eti.2021.101613

Dehghanipour A, Zamani H. Interaction of Fe₂O₃ nanoparticles with marine microalga Chlorella sorokiniana: Analysis of growth, morphological changes and biochemical composition. Plant Physiol Biochem. 2024;207:108385. DOI: 10.1016/j.plaphy.2024.108385

Bibi M, Zhu X, Munir M, Angelidaki I. Bioavailability and effect of α-Fe₂O₃ nanoparticles on growth, fatty acid composition and morphological indices of Chlorella vulgaris. Chemosphere. 2021;282:131044. DOI: 10.1016/j.chemosphere.2021.131044

Kondzior P, Butarewicz A. Effect of heavy metals (Cu and Zn) on the content of photosynthetic pigments in the cells of algae Chlorella vulgaris. J Ecol Eng. 2018;19:18-28. DOI: 10.12911/22998993/85375

Sibi G, Kumar DA, Gopal T, Harinath K, Banupriya S, Chaitra S. Metal nanoparticle triggered growth and lipid production in Chlorella vulgaris. Int J Sci Res Environ Sci Toxicol. 2017;2.

El-Agawany NI, Kaamoush MIA. Role of zinc as an essential microelement for algal growth and concerns about its potential environmental risks. Environ Sci Pollut Res. 2022;30:71900-11. DOI: 10.1007/s11356-022-20536-z

Djearamane S, Lim YM, Wong LS, Lee PF. Cellular accumulation and cytotoxic effects of zinc oxide nanoparticles in microalga Haematococcus pluvialis. PeerJ. 2019;7:e7582. DOI: 10.7717/peerj.7582

Djearamane S, Wong LS, Lim YM, Lee PF. Oxidative stress effects of zinc oxide nanoparticles on fresh water microalga Haematococcus pluvialis. Ecol Environ Conserv. 2020;26.

Jin M, Xiao X, Qin L, Geng W, Gao Y, Li L, et al. Physiological and morphological responses and tolerance mechanisms of Isochrysis galbana to Cr(VI) stress. Bioresour Technol. 2020;302:122860. DOI: 10.1016/j.biortech.2020.122860

Dao LHT, Beardall J. Effects of lead on two green microalgae Chlorella and Scenedesmus: photosystem II activity and heterogeneity. Algal Res. 2016;16:150-9. DOI: 10.1016/j.algal.2016.03.006

Zhou T, Wang J, Zheng H, Wu X, Wang Y, Liu M, et al. Characterization of additional zinc ions on the growth, biochemical composition and photosynthetic performance from Spirulina platensis. Bioresour Technol. 2018;269:285-91. DOI: 10.1016/j.biortech.2018.08.131

Akbarnezhad M, Mehrgan MS, Kamali A, Javaheri Baboli M. Effects of microelements (Fe, Cu, Zn) on growth and pigment contents of Arthrospira (Spirulina) platensis. Iran J Fish Sci. 2019;19.

Kaamoush M, El-Agawany N, Salhin HE, El-Zeiny A. Monitoring effect of nickel, copper, and zinc on growth and photosynthetic pigments of Spirulina platensis with suitability investigation in Idku Lake. Environ Sci Pollut Res. 2022;29:78942-59. DOI: 10.1007/s11356-022-21328-1

Lv B, Liu Z, Chen Y, Lan S, Mao J, Gu Z, et al. Effect of different colored LED lighting on the growth and pigment content of Isochrysis zhanjiangensis under laboratory conditions. J Mar Sci Eng. 2022;10:1752. DOI: 10.3390/jmse10111752

Kwan PP, Banerjee S, Shariff M, Yusoff FM. Influence of light on biomass and lipid production in microalgae cultivation. Aquac Res. 2021;52:1337-47. DOI: 10.1111/are.15023

Senge M, Ryan A, Letchford K, MacGowan S, Mielke T. Chlorophylls, symmetry, chirality, and photosynthesis. Symmetry (Basel). 2014;6:781-843. DOI: 10.3390/sym6030781

Vecchi V, Barera S, Bassi R, Dall’Osto L. Potential and challenges of improving photosynthesis in algae. Plants. 2020;9:67. DOI: 10.3390/plants9010067

Straka L, Rittmann BE. Effect of culture density on biomass production and light utilization efficiency of Synechocystis sp. PCC 6803. Biotechnol Bioeng. 2018;115:507-11. DOI: 10.1002/bit.26479

Greenwold MJ, Cunningham BR, Lachenmyer EM, Pullman JM, Richardson TL, Dudycha JL. Diversification of light capture ability was accompanied by the evolution of phycobiliproteins in cryptophyte algae. Proc R Soc B Biol Sci. 2019;286:20190655. DOI: 10.1098/rspb.2019.0655

Williams PJLB, Laurens LML. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci. 2010;3:554. DOI: 10.1039/b924978h

Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J. 2015;82:449-65. DOI: 10.1111/tpj.12825

He Q, Yang H, Wu L, Hu C. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol. 2015;191:219-28. DOI: 10.1016/j.biortech.2015.05.021

Sforza E, Simionato D, Giacometti GM, Bertucco A, Morosinotto T. Adjusted light and dark cycles can optimize photo-synthetic efficiency in algae growing in photobioreactors. PLoS One. 2012;7:e38975. DOI: 10.1371/journal.pone.0038975

Baidya A, Akter T, Islam MR, Shah AKMA, Hossain MA, Salam MA, et al. Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea. Heliyon. 2021;7:e08525. DOI: 10.1016/j.heliyon.2021.e08525

Acuapan-Hernandez J, Cañizares-Villanueva RO, Cristiani-Urbina E. Red light and nitrogen depletion stimulate the synthesis of lipids and N-alkadienes susceptible to be used as biofuels in Botryococcus braunii UTEX 2441 (Race A). Biotechnol (Rajkot). 2017;13.

Kim SH, Sunwoo IY, Hong HJ, Awah CC, Jeong GT, Kim SK. Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system. Bioprocess Biosyst Eng. 2019;42:1517-26. DOI: 10.1007/s00449-019-02149-y

Habibi R, G S. Light emitting diode (LED) illumination for enhanced growth and cellular composition in three microalgae. Adv Microbiol Res. 2019;3:1-6. DOI: 10.24966/AMR-694X/100007

Zhong Y, Jin P, Cheng JJ. A comprehensive comparable study of the physiological properties of four microalgal species under different light wavelength conditions. Planta. 2018;248:489-98. DOI: 10.1007/s00425-018-2899-5

Sharma N, Fleurent G, Awwad F, Cheng M, Meddeb-Mouelhi F, Budge SM, et al. Red light variation an effective alternative to regulate biomass and lipid profiles in Phaeodactylum tricornutum. Appl Sci. 2020;10:2531. DOI: 10.3390/app10072531

Li X, Huff J, Crunkleton DW, Johannes TW. LED alternating between blue and red-orange light improved the biomass and lipid productivity of Chlamydomonas reinhardtii. J Biotechnol. 2021;341:96-102. DOI: 10.1016/j.jbiotec.2021.09.008

Paper M, Glemser M, Haack M, Lorenzen J, Mehlmer N, Fuchs T, et al. Efficient green light acclimation of the green algae Picochlorum sp. triggering geranylgeranylated chlorophylls. Front Bioeng Biotechnol. 2022;10. DOI: 10.3389/fbioe.2022.885977

Diaz-MacAdoo D, Mata MT, Riquelme C. Influence of irradiance and wavelength on the antioxidant activity and carotenoids accumulation in Muriellopsis sp. isolated from the Antofagasta coastal desert. Molecules. 2022;27:2412. DOI: 10.3390/molecules27082412

Baer S, Heining M, Schwerna P, Buchholz R, Hübner H. Optimization of spectral light quality for growth and product formation in different microalgae using a continuous photobioreactor. Algal Res. 2016;14:109-15. DOI: 10.1016/j.algal.2016.01.011

Sharmila D, Suresh A, Indhumathi J, Gowtham K, Velmurugan N. Impact of various color filtered LED lights on microalgae growth, pigments and lipid production. Eur J Biotechnol Biosci. 2018;6.

Sohani E, Pajoum Shariati F, Pajoum Shariati SR. Assessment of various colored lights on the growth pattern and secondary metabolites synthesis in Spirulina platensis. Prep Biochem Biotechnol. 2023;53:412-23. DOI: 10.1080/10826068.2022.2098320

Bhat O, Unpaprom Y, Ramaraj R. Spirulina cultivation under different light-emitting diodes for boosting biomass and protein production. Mol Biotechnol. 2023. DOI: 10.1007/s12033-023-00842-8

Helamieh M, Reich M, Rohne P, Riebesell U, Kerner M, Kümmerer K. Impact of green and blue-green light on the growth, pigment concentration, and fatty acid unsaturation in the microalga Monoraphidium braunii. Photochem Photobiol. 2023. DOI: 10.1111/php.13873

Helamieh M, Reich M, Bory S, Rohne P, Riebesell U, Kerner M, et al. Blue-green light is required for a maximized fatty acid unsaturation and pigment concentration in the microalga Acutodesmus obliquus. Lipids. 2022;57:221-32. DOI: 10.1002/lipd.12343

Kendirlioğlu Şimşek G, Cetin AK. Effect of different wavelengths of light on growth, pigment content and protein amount of Chlorella vulgaris. Fresenius Environ Bull. 2017;26.

Bhosale M, Felix S. Effect of light wavelengths on biomass production and pigment enhancement of Chlorella vulgaris in indoor system. J Contrib. 2022.

Remmers IM, Martens DE, Wijffels RH, Lamers PP. Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities. PLoS One. 2017;12:e0175630. DOI: 10.1371/journal.pone.0175630

Oostlander PC, van Houcke J, Wijffels RH, Barbosa MJ. Optimization of Rhodomonas sp. under continuous cultivation for industrial applications in aquaculture. Algal Res. 2020;47:101889. DOI: 10.1016/j.algal.2020.101889

Mishra N, Prasad SM, Mishra N. Influence of high light intensity and nitrate deprivation on growth and biochemical composition of the marine microalgae Isochrysis galbana. Braz Arch Biol Technol. 2019;62. DOI: 10.1590/1678-4324-2019180398

Nzayisenga JC, Farge X, Groll SL, Sellstedt A. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnol Biofuels. 2020;13:4. DOI: 10.1186/s13068-019-1646-x

Conceição D, Lopes RG, Derner RB, Cella H, do Carmo APB, Montes D'Oca MG, et al. The effect of light intensity on the production and accumulation of pigments and fatty acids in Phaeodactylum tricornutum. J Appl Phycol. 2020;32:1017-25. DOI: 10.1007/s10811-019-02001-6

Cointet E, Wielgosz-Collin G, Bougaran G, Rabesaotra V, Gonçalves O, Méléder V. Effects of light and nitrogen availability on photosynthetic efficiency and fatty acid content of three original benthic diatom strains. PLoS One. 2019;14:e0224701. DOI: 10.1371/journal.pone.0224701

Zapata LM, Jimenez Veuthey M, Zampedri PA, Flores A, Beatriz, Zampedri CA, et al. Effect of light stress and concentrations of nitrogen and carbon in the production of phytonutrients in the microalga Scenedesmus obliquus (Chlorophyceae, Chlorococcales). J Algal Biomass Utln. 2020;11.

Khajepour F, Hosseini SA, Ghorbani Nasrabadi R, Markou G. Effect of light intensity and photoperiod on growth and biochemical composition of a local isolate of Nostoc calcicola. Appl Biochem Biotechnol. 2015;176:2279-89. DOI: 10.1007/s12010-015-1717-9

Hotos GN. Culture growth of the cyanobacterium Phormidium sp. in various salinity and light regimes and their influence on its phycocyanin and other pigments content. J Mar Sci Eng. 2021;9:798. DOI: 10.3390/jmse9080798

Kim S, Moon M, Kwak M, Lee B, Chang YK. Statistical optimization of light intensity and CO₂ concentration for lipid production derived from attached cultivation of green microalga Ettlia sp. Sci Rep. 2018;8:15390. DOI: 10.1038/s41598-018-33793-1

Sun Z, Zhang Y, Sun L, Liu J. Light elicits astaxanthin biosynthesis and accumulation in the fermented ultrahigh-density Chlorella zofinginesis. J Agric Food Chem. 2019;67:5579-86. DOI: 10.1021/acs.jafc.9b01176

Schüler LM, Santos T, Pereira H, Duarte P, Katkam NG, Florindo C, et al. Improved production of lutein and -caro-tene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Res. 2020;45:101732. DOI: 10.1016/j.algal.2019.101732

Metsoviti MN, Papapolymerou G, Karapanagiotidis IT, Katsoulas N. Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. Plants. 2019;9:31. DOI: 10.3390/plants9010031

Praharyawan S, Rahman DY, Susilaningsih D. Influence of light intensity on lipid productivity and fatty acids profile of Choricystis sp. LBB13-AL045 for biodiesel production. Res J Life Sci. 2018;5:128-39. DOI: 10.21776/ub.rjls.2018.005.02.7

Xu Y, Ibrahim I, Wosu C, Ben-Amotz A, Harvey P. Potential of new isolates of Dunaliella salina for natural β-carotene production. Biology (Basel). 2018;7:14. DOI: 10.3390/biology7010014

Sivaramakrishnan R, Incharoensakdi A. Low power ultrasound treatment for the enhanced production of microalgae biomass and lipid content. Biocatal Agric Biotechnol. 2019;20:101230. DOI: 10.1016/j.bcab.2019.101230

Sivaramakrishnan R, Incharoensakdi A. Enhancement of lipid production in Scenedesmus sp. by UV mutagenesis and hydrogen peroxide treatment. Bioresour Technol. 2017;235:366-70. DOI: 10.1016/j.biortech.2017.03.102

Xiao S, Ju LK. Energy-efficient ultrasonic release of bacteria and particulates to facilitate ingestion by phagotrophic algae for waste sludge treatment and algal biomass and lipid production. Chemosphere. 2018;209:588-98. DOI: 10.1016/j.chemosphere.2018.06.120

Sivaramakrishnan R, Muthukumar K. Production of methyl ester from Oedogonium sp. oil using immobilized isolated novel Bacillus sp. lipase. Energy Fuels. 2012;26:6387-92. DOI: 10.1021/ef300769s

Ren HY, Xiao RN, Kong F, Zhao L, Xing D, Ma J, et al. Enhanced biomass and lipid accumulation of mixotrophic microalgae by using low-strength ultrasonic stimulation. Bioresour Technol. 2019;272:606-10. DOI: 10.1016/j.biortech.2018.10.058

Ma YA, Cheng YM, Huang JW, Jen JF, Huang YS, Yu CC. Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae. Bioprocess Biosyst Eng. 2014;37:1543-9. DOI: 10.1007/s00449-014-1126-4

Han F, Pei H, Hu W, Jiang L, Cheng J, Zhang L. Beneficial changes in biomass and lipid of microalgae Anabaena variabilis facing the ultrasonic stress environment. Bioresour Technol. 2016;209:16-22. DOI: 10.1016/j.biortech.2016.02.103

Joyce EM, King PM, Mason TJ. The effect of ultrasound on the growth and viability of microalgae cells. J Appl Phycol. 2014;26:1741-8. DOI: 10.1007/s10811-013-0202-5

Lichtenthaler H. Plant lipids—biology, utilisation and manipulation. J Plant Physiol. 2005;162:1074-5. DOI: 10.1016/j.jplph.2005.03.001

Zhuang LL, Hu HY, Wu YH, Wang T, Zhang TY. A novel suspended-solid phase photobioreactor to improve biomass production and separation of microalgae. Bioresour Technol. 2014;153:399-402. DOI: 10.1016/j.biortech.2013.12.035

Chou MX, Wei XY, Chen DS, Zhou JC. A novel nodule-enhanced gene encoding a putative universal stress protein from Astragalus sinicus. J Plant Physiol. 2007;164:764-72. DOI: 10.1016/j.jplph.2006.05.009

Mao X, Wu T, Sun D, Zhang Z, Chen F. Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresour Technol. 2018;249:791-8. DOI: 10.1016/j.biortech.2017.10.090

Das S, Liu CC, Jean JS, Lee CC, Yang HJ. Effects of microbially induced transformations and shift in bacterial community on arsenic mobility in arsenic-rich deep aquifer sediments. J Hazard Mater. 2016;310:11-9. DOI: 10.1016/j.jhazmat.2016.02.019

Torres P, Santos JP, Chow F, Pena Ferreira MJ, dos Santos DYAC. Comparative analysis of in vitro antioxidant capacities of mycosporine-like amino acids (MAAs). Algal Res. 2018;34:57-67. DOI: 10.1016/j.algal.2018.07.007

Chueakula N, Jaikumkao K, Arjinajarn P, Pongchaidecha A, Chatsudthipong V, Chattipakorn N, et al. Diacerein alleviates kidney injury through attenuating inflammation and oxidative stress in obese insulin-resistant rats. Free Radic Biol Med. 2018;115:146-55. DOI: 10.1016/j.freeradbiomed.2017.11.021

Vintila ACN, Vinatoru M, Galan AM, Vlaicu A, Ciltea-Udrescu M, Paulenco A, et al. The influence of ultrasound on the growth of Nannochloris sp. in modified growth medium. Life. 2023;13:413. DOI: 10.3390/life13020413

Singh RD, Sethy S, Ghosh S, Srivastava AK. UV and γ-radiation induced molecular changes for rapid lipid accumulation in Chlorella sorokiniana. Biomass Bioenergy. 2022;163:106493. DOI: 10.1016/j.biombioe.2022.106493

Arakaki A, Matsumoto T, Tateishi T, Matsumoto M, Nojima D, Tomoko Y, et al. UV-C irradiation accelerates neutral lipid synthesis in the marine oleaginous diatom Fistulifera solaris. Bioresour Technol. 2017;245:1520-6. DOI: 10.1016/j.biortech.2017.05.188

Pradhan B, Baral S, Patra S, Behera C, Nayak R, MubarakAli D, et al. Delineation of gamma irradiation (⁶⁰Co) induced oxidative stress by decrypting antioxidants and biochemical responses of microalga, Chlorella sp. Biocatal Agric Biotechnol. 2020;25:101595. DOI: 10.1016/j.bcab.2020.101595

Srivastava A, Kumar A, Biswas S, Kumar R, Srivastava V, Rajaram H, et al. Gamma (γ)-radiation stress response of the cyanobacterium Anabaena sp. PCC7120: Regulatory role of LexA and photophysiological changes. Plant Sci. 2023;326:111529. DOI: 10.1016/j.plantsci.2022.111529

Singh R, Upadhyay AK, Singh DV, Singh JS, Singh DP. Photosynthetic performance, nutrient status and lipid yield of microalgae Chlorella vulgaris and Chlorococcum humicola under UV-B exposure. Curr Res Biotechnol. 2019;1:65-77. DOI: 10.1016/j.crbiot.2019.10.001

Gomes T, Xie L, Brede D, Lind OC, Solhaug KA, Salbu B, et al. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation. Aquat Toxicol. 2017;183:1-10. DOI: 10.1016/j.aquatox.2016.12.001

Wongsnansilp T, Yokthongwattana K, Roytrakul S, Juntawong N. β-carotene production of UV-C induced Dunaliella salina under salt stress. J Pure Appl Microbiol. 2019;13:193-200. DOI: 10.22207/JPAM.13.1.20

Downloads

Published

2025-06-13

How to Cite

1.
Golub N, Kovalova S. Effect of Chemical and Physical Factors on Microalgae Metabolism. Innov Biosyst Bioeng [Internet]. 2025Jun.13 [cited 2025Jul.6];9(3):14-32. Available from: https://ibb.kpi.ua/article/view/306265