Effect of Magnetic Field and Magnetic Nanoparticles on Choice of Endothelial Cell Phenotype
DOI:
https://doi.org/10.20535/ibb.2024.8.3.292667Keywords:
gradient magnetic field, rotating magnetic field, endothelial cells, intracellular calcium concentration, phenotype selection, magnetic nanoparticlesAbstract
Background. Endothelial cells as participants in angiogenesis choose their phenotype as tip cells (leading, migratory) or stalk cells (following). It has been experimentally found and theoretically modeled that rapid oscillations in intracellular calcium concentration play a key role in controlling phenotype selection and possible vessel architecture. In addition, the intracellular calcium concentration in endothelial cells is known to be regulated by mechanical wall shear stress induced by blood flow, which controls mechanosensitive calcium ion channel gating. Experimental methods of controlling mechanosensitive ion channel gating in external magnetic fields with application of magnetic nanoparticles are developed that affect magnetic nanoparticles artificially attached to cell membranes.
Objective. A key question is raised about the possibility of controlled selection of endothelial cell phenotype in external magnetic fields due to the presence of artificial or biogenic magnetic nanoparticles embedded in the cell membrane.
Methods. The magnetic wall shear stress is calculated due to the influence of the external magnetic field on the magnetic nanoparticles embedded in the cell membrane, which controls the mechanosensitive calcium ion pathways. Numerical modeling of oscillations in intracellular calcium concentration in endothelial cells and determination of their final phenotype was carried out taking into account intercellular communication. The python programming language and scipy, py-pde, matplotlib packages of the python programming language were used for numerical modeling.
Results. The magnetic field flux density and frequency ranges of a uniform rotating magnetic field, as well as the magnitude of the gradient and the frequency of a non-uniform oscillating magnetic field were calculated for controlling the amplitude and frequency of intracellular calcium concentration oscillations in endothelial cells, as well as the selection of their phenotype. It opens the perspective of controlling angiogenesis and vessel architecture.
Conclusions. Phenotype selection by endothelial cells can be controlled in a uniform rotating external magnetic field, as well as in a non-homogeneous oscillating magnetic field.
References
Dorofteiu M, Morariu VV, Marina C, Zirbo M. The effects of near null magnetic field upon the leucocyte response in rats. Cytobios. 1995;84(338-339):179-89.
Tao R, Huang K. Reducing blood viscosity with magnetic fields. Phys Rev E Stat Nonlin Soft Matter Phys. 2011;84(1 Pt 1):011905. DOI: 10.1103/PhysRevE.84.011905
Yamamoto T, Nagayama Y, Tamura M. A blood-oxygenation-dependent increase in blood viscosity due to a static magnetic field. Phys Med Biol. 2004 Jul 21;49(14):3267-77. DOI: 10.1088/0031-9155/49/14/017
Trofimov AV, Sevostyanova EV. Dynamics of blood values in experimental geomagnetic deprivation (in vitro) reflects biotropic effects of natural physical factors during early human ontogeny. Bull Exp Biol Med. 2008 Jul;146(1):100-3. DOI: 10.1007/s10517-008-0221-4
Ciorba D, Morariu VV. Life in zero magnetic field. iii. activity of aspartate aminotransferase and alanine aminotransferase during in vitro aging of human blood. Electro Magnetobiol. 2001;20(3):313-21. DOI: 10.1081/JBC-100108572
Martino CF, Perea H, Hopfner U, Ferguson VL, Wintermantel E. Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics. 2010 May;31(4):296-301. DOI: 10.1002/bem.20565
Martino CF. Static magnetic field sensitivity of endothelial cells. Bioelectromagnetics. 2011;32(6):506-8. DOI: 10.1002/bem.20665
McKay JC, Prato FS, Thomas AW. A literature review: the effects of magnetic field exposure on blood flow and blood vessels in the microvasculature. Bioelectromagnetics. 2007 Feb;28(2):81-98. DOI: 10.1002/bem.20284
Weber RV, Navarro A, Wu JK, Yu HL, Strauch B. Pulsed magnetic fields applied to a transferred arterial loop support the rat groin composite flap. Plast Reconstr Surg. 2004 Oct;114(5):1185-9. DOI: 10.1097/01.prs.0000135857.95310.13
Tepper OM, Callaghan MJ, Chang EI, Galiano RD, Bhatt KA, Baharestani S, et al. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J. 2004;18(11):1231-3. DOI: 10.1096/fj.03-0847fje
Greenough CG. The effects of pulsed electromagnetic fields on blood vessel growth in the rabbit ear chamber. J Orthop Res. 1992 Mar;10(2):256-62. DOI: 10.1002/jor.1100100213
Roland D, Ferder M, Kothuru R, Faierman T, Strauch B. Effects of pulsed magnetic energy on a microsurgically transferred vessel. Plast Reconstr Surg. 2000 Apr;105(4):1371-4. DOI: 10.1097/00006534-200004040-00016
Yen-Patton GPA, Patton WF, Beer DM, Jacobson BS. Endothelial cell response to pulsed electromagnetic fields: stimulation of growth rate and angiogenesis in vitro. J Cell Physiol. 1988 Jan;134(1):37-46. DOI: 10.1002/jcp.1041340105
Ottani V, De Pasquale V, Govoni P, Franchi M, Zaniol P, Ruggeri A. Effects of pulsed extremely-low-frequency magnetic fields on skin wounds in the rat. Bioelectromagnetics. 1988;9(1):53-62. DOI: 10.1002/bem.2250090105
Williams CD, Markov MS, Hardman WE, Cameron IL. Therapeutic electromagnetic field effects on angiogenesis and tumor growth. Anticancer Res. 2001 Nov-Dec;21(6A):3887-91.
Ruggiero M, Bottaro DP, Liguri G, Gulisano M, Peruzzi B, Pacini S. 0.2 T magnetic field inhibits angiogenesis in chick embryo chorioallantoic membrane. Bioelectromagnetics. 2004 Jul;25(5):390-6. DOI: 10.1002/bem.20008
Gorobets S, Gorobets O, Gorobets Y, Bulaievska M. Chain-Like Structures of Biogenic and Nonbiogenic Magnetic Nanoparticles in Vascular Tissues. Bioelectromagnetics. 2022 Feb;43(2):119-43. DOI: 10.1002/bem.22390
Gorobets O, Gorobets S, Sharai I, Polyakova T, Zablotskii V. Interaction of magnetic fields with biogenic magnetic nanoparticles on cell membranes: Physiological consequences for organisms in health and disease. Bioelectrochemistry. 2023 Jun;151:108390. DOI: 10.1016/j.bioelechem.2023.108390
Gorobets O, Gorobets S, Polyakova T, Zablotskii V. Modulation of calcium signaling and metabolic pathways in endothelial cells with magnetic fields. Nanoscale Adv. 2024 Jan 23;6(4):1163-82. DOI: 10.1039/d3na01065a
Hughes S, McBain S, Dobson J, El Haj AJ. Selective activation of mechanosensitive ion channels using magnetic particles. J R Soc Interface. 2008 Aug 6;5(25):855-63. DOI: 10.1098/rsif.2007.1274
Unnithan AR, Rotherham M, Markides H, El Haj AJ. Magnetic ion channel activation (MICA)-enabled screening assay: A dynamic platform for remote activation of mechanosensitive ion channels. Int J Mol Sci. 2023 Feb 8;24(4):3364. DOI: 10.3390/ijms24043364
Hao L, Li L, Wang P, Wang Z, Shi X, Guo M, Zhang P. Synergistic osteogenesis promoted by magnetically actuated nano-mechanical stimuli. Nanoscale. 2019 Dec 28;11(48):23423-37. DOI: 10.1039/c9nr07170a
Debir B, Meaney C, Kohandel M, Unlu MB. The role of calcium oscillations in the phenotype selection in endothelial cells. Sci Rep. 2021 Dec 10;11(1):23781. DOI: 10.1038/s41598-021-02720-2
Plank MJ, Wall DJ, David T. Atherosclerosis and calcium signalling in endothelial cells. Prog Biophys Mol Biol. 2006 Jul;91(3):287-313. DOI: 10.1016/j.pbiomolbio.2005.07.005
Kostyuk PG. Diversity of calcium ion channels in cellular membranes. Neuroscience. 1989;28(2):253-61. DOI: 10.1016/0306-4522(89)90177-2
Heine M, Heck J, Ciuraszkiewicz A, Bikbaev A. Dynamic compartmentalization of calcium channel signalling in neurons. Neuropharmacology. 2020 Jun 1;169:107556. DOI: 10.1016/j.neuropharm.2019.02.038
Findlay I, Suzuki S, Murakami S, Kurachi Y. Physiological modulation of voltage-dependent inactivation in the cardiac muscle L-type calcium channel: a modelling study. Prog Biophys Mol Biol. 2008;96(1-3):482-98. DOI: 10.1016/j.pbiomolbio.2007.07.002
Alexander SPH, Mathie A, Peters JA. Ion channels. Br J Pharmacol 2011;164(s1):S137-74. DOI: 10.1111/j.1476-5381.2011.01649_5.x
Peyronnet R, Tran D, Girault T, Frachisse JM. Mechanosensitive channels: feeling tension in a world under pressure. Front Plant Sci. 2014 Oct 21;5:558. DOI: 10.3389/fpls.2014.00558
Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57(4):411-25. DOI: 10.1124/pr.57.4.5
Dash S, Das T, Patel P, Panda PK, Suar M, Verma SK. Emerging trends in the nanomedicine applications of functionalized magnetic nanoparticles as novel therapies for acute and chronic diseases. J Nanobiotechnology. 2022 Aug 31;20(1):393. DOI: 10.1186/s12951-022-01595-3
Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, et al. The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood. 2012;120(25):5063-72. DOI: 10.1182/blood-2012-04-423004
Leach A, Smyth P, Ferguson L, Steven J, Greene MK, Branco CM, et al. Anti-DLL4 VNAR targeted nanoparticles for targeting of both tumour and tumour associated vasculature. Nanoscale. 2020;12(27):14751-63. DOI: 10.1039/d0nr02962a
Trindade A, Djokovic D, Gigante J, Mendonça L, Duarte A. Endothelial Dll4 overexpression reduces vascular response and inhibits tumor growth and metastasization in vivo. BMC Cancer. 2017 Mar 14;17(1):189. DOI: 10.1186/s12885-017-3171-2
Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3219-24. DOI: 10.1073/pnas.0611206104
Atri A, Amundson J, Clapham D, Sneyd J. A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys J. 1993 Oct;65(4):1727-39. DOI: 10.1016/S0006-3495(93)81191-3
Venkatraman L, Regan ER, Bentley K. Time to Decide? Dynamical Analysis Predicts Partial Tip/Stalk Patterning States Arise during Angiogenesis. PLoS One. 2016 Nov 15;11(11):e0166489. DOI: 10.1371/journal.pone.0166489
Skalak R, Tozeren A, Zarda RP, Chien S. Strain energy function of red blood cell membranes. Biophys J. 1973;13(3):245-64. DOI: 10.1016/S0006-3495(73)85983-1
Wiesner TF, Berk BC, Nerem RM. A mathematical model of the cytosolic-free calcium response in endothelial cells to fluid shear stress. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3726-31. DOI: 10.1073/pnas.94.8.3726
Roux E, Bougaran P, Dufourcq P, Couffinhal T. Fluid Shear Stress Sensing by the Endothelial Layer. Front Physiol. 2020 Jul 24;11:861. DOI: 10.3389/fphys.2020.00861
Smedler E, Uhlén P. Frequency decoding of calcium oscillations. Biochim Biophys Acta. 2014 Mar;1840(3):964-9. DOI: 10.1016/j.bbagen.2013.11.015
Yokota Y, Nakajima H, Wakayama Y, Muto A, Kawakami K, Fukuhara S, et al. Endothelial Ca2+ oscillations reflect VEGFR signaling-regulated angiogenic capacity in vivo. eLife. 2015;4:e08817. DOI: 10.7554/eLife.08817
Malek AM, Izumo S. Control of endothelial cell gene expression by flow. J Biomech. 1995 Dec;28(12):1515-28. DOI: 10.1016/0021-9290(95)00099-2
Herbert SP, Cheung JY, Stainier DY. Determination of endothelial stalk versus tip cell potential during angiogenesis by H2.0-like homeobox-1. Curr Biol. 2012 Oct 9;22(19):1789-94. DOI: 10.1016/j.cub.2012.07.037
Chen W, Xia P, Wang H, Tu J, Liang X, Zhang X, et al. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J Cell Commun Signal. 2019 Sep;13(3):291-301. DOI: 10.1007/s12079-019-00511-z
Gurevich DB, David DT, Sundararaman A, Patel J. Endothelial heterogeneity in development and wound healing. Cells. 2021 Sep 7;10(9):2338. DOI: 10.3390/cells10092338
Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci. 2021;78(4):1329-54. DOI: 10.1007/s00018-020-03664-y
Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol Oncol. 2011 Mar;45(1):1-16. DOI: 10.2478/v10019-011-0001-z
Alirezaie Alavijeh A, Barati M, Barati M, Abbasi Dehkordi H. The potential of magnetic nanoparticles for diagnosis and treatment of cancer based on body magnetic field and organ-on-the-chip. Adv Pharm Bull. 2019 Aug;9(3):360-73. DOI: 10.15171/apb.2019.043
Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci. 2014;4(4):385-92. DOI: 10.1007/s13204-013-0216-y
Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019 Nov 21;23(1):20. DOI: 10.1186/s40824-019-0166-x
Judakova Z, Janousek L, Radil R, Carnecka L. Low-frequency magnetic field exposure system for cells electromagnetic biocompatibility studies. Appl Sci. 2022;12(14):6846. DOI: 10.3390/app12146846
Li Y, Chen Z, Liu Y, Liu Z, Wu T, Zhang Y, et al. Ultra-low frequency magnetic energy focusing for highly effective wireless powering of deep-tissue implantable electronic devices. Natl Sci Rev. 2024;11(5):nwae062. DOI: 10.1093/nsr/nwae062
Grant D, Wanner N, Frimel M, Erzurum S, Asosingh K. Comprehensive phenotyping of endothelial cells using flow cytometry 2: Human. Cytometry A. 2021 Mar;99(3):257-64. DOI: 10.1002/cyto.a.24293
Blanco R, Gerhardt H. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med. 2013;3(1):a006569. DOI: 10.1101/cshperspect.a006569
Moccia F, Brunetti V, Soda T, Berra-Romani R, Scarpellino G. Cracking the endothelial calcium (Ca2+) code: A matter of timing and spacing. Int J Mol Sci. 2023 Nov 26;24(23):16765. DOI: 10.3390/ijms242316765
Gorobets O, Gorobets S, Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans. Int J Nanomedicine. 2017 Jun 12;12:4371-95. DOI: 10.2147/IJN.S130565
Manjua AC, Cabral JMS, Portugal CAM, Ferreira FC. Magnetic stimulation of the angiogenic potential of mesenchymal stromal cells in vascular tissue engineering. Sci Technol Adv Mater. 2021;22(1):461-80. DOI: 10.1080/14686996.2021.1927834
Chen J, Tu C, Tang X, Li H, Yan J, Ma Y, et al. The combinatory effect of sinusoidal electromagnetic field and VEGF promotes osteogenesis and angiogenesis of mesenchymal stem cell-laden PCL/HA implants in a rat subcritical cranial defect. Stem Cell Res Ther. 2019 Dec 16;10(1):379. DOI: 10.1186/s13287-019-1464-x
Wosik J, Chen W, Qin K, Ghobrial RM, Kubiak JZ, Kloc M. Magnetic field changes macrophage phenotype. Biophys J. 2018 Apr 24;114(8):2001-13. DOI: 10.1016/j.bpj.2018.03.002
Qian AR, Gao X, Zhang W, Li JB, Wang Y, Di SM, et al. Large gradient high magnetic fields affect osteoblast ultrastructure and function by disrupting collagen I or fibronectin/αβ1 integrin. PLoS One. 2013;8(1):e51036. DOI: 10.1371/journal.pone.0051036
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The ownership of copyright remains with the Authors.
Authors may use their own material in other publications provided that the Journal is acknowledged as the original place of publication and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” as the Publisher.
Authors are reminded that it is their responsibility to comply with copyright laws. It is essential to ensure that no part of the text or illustrations have appeared or are due to appear in other publications, without prior permission from the copyright holder.
IBB articles are published under Creative Commons licence:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.