Effect of Magnetic Field and Magnetic Nanoparticles on Choice of Endothelial Cell Phenotype

Authors

  • Svitlana Gorobets Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
  • Oksana Gorobets Igor Sikorsky Kyiv Polytechnic Institute, Ukraine http://orcid.org/0000-0002-2911-6870
  • Kateryna Rachek Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
  • Anastasia Ryazanova Igor Sikorsky Kyiv Polytechnic Institute, Ukraine

DOI:

https://doi.org/10.20535/ibb.2024.8.3.292667

Keywords:

gradient magnetic field, rotating magnetic field, endothelial cells, intracellular calcium concentration, phenotype selection, magnetic nanoparticles

Abstract

Background. Endothelial cells as participants in angiogenesis choose their phenotype as tip cells (leading, migratory) or stalk cells (following). It has been experimentally found and theoretically modeled that rapid oscillations in intracellular calcium concentration play a key role in controlling phenotype selection and possible vessel architecture. In addition, the intracellular calcium concentration in endothelial cells is known to be regulated by mechanical wall shear stress induced by blood flow, which controls mechanosensitive calcium ion channel gating. Experimental methods of controlling mechanosensitive ion channel gating in external magnetic fields with application of magnetic nanoparticles are developed that affect magnetic nanoparticles artificially attached to cell membranes.

Objective. A key question is raised about the possibility of controlled selection of endothelial cell phenotype in external magnetic fields due to the presence of artificial or biogenic magnetic nanoparticles embedded in the cell membrane.

Methods. The magnetic wall shear stress is calculated due to the influence of the external magnetic field on the magnetic nanoparticles embedded in the cell membrane, which controls the mechanosensitive calcium ion pathways. Numerical modeling of oscillations in intracellular calcium concentration in endothelial cells and determination of their final phenotype was carried out taking into account intercellular communication. The python programming language and scipy, py-pde, matplotlib packages of the python programming language were used for numerical modeling.

Results. The magnetic field flux density and frequency ranges of a uniform rotating magnetic field, as well as the magnitude of the gradient and the frequency of a non-uniform oscillating magnetic field were calculated for controlling the amplitude and frequency of intracellular calcium concentration oscillations in endothelial cells, as well as the selection of their phenotype. It opens the perspective of controlling angiogenesis and vessel architecture.

Conclusions. Phenotype selection by endothelial cells can be controlled in a uniform rotating external magnetic field, as well as in a non-homogeneous oscillating magnetic field.

References

Dorofteiu M, Morariu VV, Marina C, Zirbo M. The effects of near null magnetic field upon the leucocyte response in rats. Cytobios. 1995;84(338-339):179-89.

Tao R, Huang K. Reducing blood viscosity with magnetic fields. Phys Rev E Stat Nonlin Soft Matter Phys. 2011;84(1 Pt 1):011905. DOI: 10.1103/PhysRevE.84.011905

Yamamoto T, Nagayama Y, Tamura M. A blood-oxygenation-dependent increase in blood viscosity due to a static magnetic field. Phys Med Biol. 2004 Jul 21;49(14):3267-77. DOI: 10.1088/0031-9155/49/14/017

Trofimov AV, Sevostyanova EV. Dynamics of blood values in experimental geomagnetic deprivation (in vitro) reflects biotropic effects of natural physical factors during early human ontogeny. Bull Exp Biol Med. 2008 Jul;146(1):100-3. DOI: 10.1007/s10517-008-0221-4

Ciorba D, Morariu VV. Life in zero magnetic field. iii. activity of aspartate aminotransferase and alanine aminotransferase during in vitro aging of human blood. Electro Magnetobiol. 2001;20(3):313-21. DOI: 10.1081/JBC-100108572

Martino CF, Perea H, Hopfner U, Ferguson VL, Wintermantel E. Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics. 2010 May;31(4):296-301. DOI: 10.1002/bem.20565

Martino CF. Static magnetic field sensitivity of endothelial cells. Bioelectromagnetics. 2011;32(6):506-8. DOI: 10.1002/bem.20665

McKay JC, Prato FS, Thomas AW. A literature review: the effects of magnetic field exposure on blood flow and blood vessels in the microvasculature. Bioelectromagnetics. 2007 Feb;28(2):81-98. DOI: 10.1002/bem.20284

Weber RV, Navarro A, Wu JK, Yu HL, Strauch B. Pulsed magnetic fields applied to a transferred arterial loop support the rat groin composite flap. Plast Reconstr Surg. 2004 Oct;114(5):1185-9. DOI: 10.1097/01.prs.0000135857.95310.13

Tepper OM, Callaghan MJ, Chang EI, Galiano RD, Bhatt KA, Baharestani S, et al. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2. FASEB J. 2004;18(11):1231-3. DOI: 10.1096/fj.03-0847fje

Greenough CG. The effects of pulsed electromagnetic fields on blood vessel growth in the rabbit ear chamber. J Orthop Res. 1992 Mar;10(2):256-62. DOI: 10.1002/jor.1100100213

Roland D, Ferder M, Kothuru R, Faierman T, Strauch B. Effects of pulsed magnetic energy on a microsurgically transferred vessel. Plast Reconstr Surg. 2000 Apr;105(4):1371-4. DOI: 10.1097/00006534-200004040-00016

Yen-Patton GPA, Patton WF, Beer DM, Jacobson BS. Endothelial cell response to pulsed electromagnetic fields: stimulation of growth rate and angiogenesis in vitro. J Cell Physiol. 1988 Jan;134(1):37-46. DOI: 10.1002/jcp.1041340105

Ottani V, De Pasquale V, Govoni P, Franchi M, Zaniol P, Ruggeri A. Effects of pulsed extremely-low-frequency magnetic fields on skin wounds in the rat. Bioelectromagnetics. 1988;9(1):53-62. DOI: 10.1002/bem.2250090105

Williams CD, Markov MS, Hardman WE, Cameron IL. Therapeutic electromagnetic field effects on angiogenesis and tumor growth. Anticancer Res. 2001 Nov-Dec;21(6A):3887-91.

Ruggiero M, Bottaro DP, Liguri G, Gulisano M, Peruzzi B, Pacini S. 0.2 T magnetic field inhibits angiogenesis in chick embryo chorioallantoic membrane. Bioelectromagnetics. 2004 Jul;25(5):390-6. DOI: 10.1002/bem.20008

Gorobets S, Gorobets O, Gorobets Y, Bulaievska M. Chain-Like Structures of Biogenic and Nonbiogenic Magnetic Nanoparticles in Vascular Tissues. Bioelectromagnetics. 2022 Feb;43(2):119-43. DOI: 10.1002/bem.22390

Gorobets O, Gorobets S, Sharai I, Polyakova T, Zablotskii V. Interaction of magnetic fields with biogenic magnetic nanoparticles on cell membranes: Physiological consequences for organisms in health and disease. Bioelectrochemistry. 2023 Jun;151:108390. DOI: 10.1016/j.bioelechem.2023.108390

Gorobets O, Gorobets S, Polyakova T, Zablotskii V. Modulation of calcium signaling and metabolic pathways in endothelial cells with magnetic fields. Nanoscale Adv. 2024 Jan 23;6(4):1163-82. DOI: 10.1039/d3na01065a

Hughes S, McBain S, Dobson J, El Haj AJ. Selective activation of mechanosensitive ion channels using magnetic particles. J R Soc Interface. 2008 Aug 6;5(25):855-63. DOI: 10.1098/rsif.2007.1274

Unnithan AR, Rotherham M, Markides H, El Haj AJ. Magnetic ion channel activation (MICA)-enabled screening assay: A dynamic platform for remote activation of mechanosensitive ion channels. Int J Mol Sci. 2023 Feb 8;24(4):3364. DOI: 10.3390/ijms24043364

Hao L, Li L, Wang P, Wang Z, Shi X, Guo M, Zhang P. Synergistic osteogenesis promoted by magnetically actuated nano-mechanical stimuli. Nanoscale. 2019 Dec 28;11(48):23423-37. DOI: 10.1039/c9nr07170a

Debir B, Meaney C, Kohandel M, Unlu MB. The role of calcium oscillations in the phenotype selection in endothelial cells. Sci Rep. 2021 Dec 10;11(1):23781. DOI: 10.1038/s41598-021-02720-2

Plank MJ, Wall DJ, David T. Atherosclerosis and calcium signalling in endothelial cells. Prog Biophys Mol Biol. 2006 Jul;91(3):287-313. DOI: 10.1016/j.pbiomolbio.2005.07.005

Kostyuk PG. Diversity of calcium ion channels in cellular membranes. Neuroscience. 1989;28(2):253-61. DOI: 10.1016/0306-4522(89)90177-2

Heine M, Heck J, Ciuraszkiewicz A, Bikbaev A. Dynamic compartmentalization of calcium channel signalling in neurons. Neuropharmacology. 2020 Jun 1;169:107556. DOI: 10.1016/j.neuropharm.2019.02.038

Findlay I, Suzuki S, Murakami S, Kurachi Y. Physiological modulation of voltage-dependent inactivation in the cardiac muscle L-type calcium channel: a modelling study. Prog Biophys Mol Biol. 2008;96(1-3):482-98. DOI: 10.1016/j.pbiomolbio.2007.07.002

Alexander SPH, Mathie A, Peters JA. Ion channels. Br J Pharmacol 2011;164(s1):S137-74. DOI: 10.1111/j.1476-5381.2011.01649_5.x

Peyronnet R, Tran D, Girault T, Frachisse JM. Mechanosensitive channels: feeling tension in a world under pressure. Front Plant Sci. 2014 Oct 21;5:558. DOI: 10.3389/fpls.2014.00558

Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57(4):411-25. DOI: 10.1124/pr.57.4.5

Dash S, Das T, Patel P, Panda PK, Suar M, Verma SK. Emerging trends in the nanomedicine applications of functionalized magnetic nanoparticles as novel therapies for acute and chronic diseases. J Nanobiotechnology. 2022 Aug 31;20(1):393. DOI: 10.1186/s12951-022-01595-3

Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, et al. The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood. 2012;120(25):5063-72. DOI: 10.1182/blood-2012-04-423004

Leach A, Smyth P, Ferguson L, Steven J, Greene MK, Branco CM, et al. Anti-DLL4 VNAR targeted nanoparticles for targeting of both tumour and tumour associated vasculature. Nanoscale. 2020;12(27):14751-63. DOI: 10.1039/d0nr02962a

Trindade A, Djokovic D, Gigante J, Mendonça L, Duarte A. Endothelial Dll4 overexpression reduces vascular response and inhibits tumor growth and metastasization in vivo. BMC Cancer. 2017 Mar 14;17(1):189. DOI: 10.1186/s12885-017-3171-2

Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3219-24. DOI: 10.1073/pnas.0611206104

Atri A, Amundson J, Clapham D, Sneyd J. A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys J. 1993 Oct;65(4):1727-39. DOI: 10.1016/S0006-3495(93)81191-3

Venkatraman L, Regan ER, Bentley K. Time to Decide? Dynamical Analysis Predicts Partial Tip/Stalk Patterning States Arise during Angiogenesis. PLoS One. 2016 Nov 15;11(11):e0166489. DOI: 10.1371/journal.pone.0166489

Skalak R, Tozeren A, Zarda RP, Chien S. Strain energy function of red blood cell membranes. Biophys J. 1973;13(3):245-64. DOI: 10.1016/S0006-3495(73)85983-1

Wiesner TF, Berk BC, Nerem RM. A mathematical model of the cytosolic-free calcium response in endothelial cells to fluid shear stress. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3726-31. DOI: 10.1073/pnas.94.8.3726

Roux E, Bougaran P, Dufourcq P, Couffinhal T. Fluid Shear Stress Sensing by the Endothelial Layer. Front Physiol. 2020 Jul 24;11:861. DOI: 10.3389/fphys.2020.00861

Smedler E, Uhlén P. Frequency decoding of calcium oscillations. Biochim Biophys Acta. 2014 Mar;1840(3):964-9. DOI: 10.1016/j.bbagen.2013.11.015

Yokota Y, Nakajima H, Wakayama Y, Muto A, Kawakami K, Fukuhara S, et al. Endothelial Ca2+ oscillations reflect VEGFR signaling-regulated angiogenic capacity in vivo. eLife. 2015;4:e08817. DOI: 10.7554/eLife.08817

Malek AM, Izumo S. Control of endothelial cell gene expression by flow. J Biomech. 1995 Dec;28(12):1515-28. DOI: 10.1016/0021-9290(95)00099-2

Herbert SP, Cheung JY, Stainier DY. Determination of endothelial stalk versus tip cell potential during angiogenesis by H2.0-like homeobox-1. Curr Biol. 2012 Oct 9;22(19):1789-94. DOI: 10.1016/j.cub.2012.07.037

Chen W, Xia P, Wang H, Tu J, Liang X, Zhang X, et al. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J Cell Commun Signal. 2019 Sep;13(3):291-301. DOI: 10.1007/s12079-019-00511-z

Gurevich DB, David DT, Sundararaman A, Patel J. Endothelial heterogeneity in development and wound healing. Cells. 2021 Sep 7;10(9):2338. DOI: 10.3390/cells10092338

Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci. 2021;78(4):1329-54. DOI: 10.1007/s00018-020-03664-y

Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol Oncol. 2011 Mar;45(1):1-16. DOI: 10.2478/v10019-011-0001-z

Alirezaie Alavijeh A, Barati M, Barati M, Abbasi Dehkordi H. The potential of magnetic nanoparticles for diagnosis and treatment of cancer based on body magnetic field and organ-on-the-chip. Adv Pharm Bull. 2019 Aug;9(3):360-73. DOI: 10.15171/apb.2019.043

Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci. 2014;4(4):385-92. DOI: 10.1007/s13204-013-0216-y

Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019 Nov 21;23(1):20. DOI: 10.1186/s40824-019-0166-x

Judakova Z, Janousek L, Radil R, Carnecka L. Low-frequency magnetic field exposure system for cells electromagnetic biocompatibility studies. Appl Sci. 2022;12(14):6846. DOI: 10.3390/app12146846

Li Y, Chen Z, Liu Y, Liu Z, Wu T, Zhang Y, et al. Ultra-low frequency magnetic energy focusing for highly effective wireless powering of deep-tissue implantable electronic devices. Natl Sci Rev. 2024;11(5):nwae062. DOI: 10.1093/nsr/nwae062

Grant D, Wanner N, Frimel M, Erzurum S, Asosingh K. Comprehensive phenotyping of endothelial cells using flow cytometry 2: Human. Cytometry A. 2021 Mar;99(3):257-64. DOI: 10.1002/cyto.a.24293

Blanco R, Gerhardt H. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med. 2013;3(1):a006569. DOI: 10.1101/cshperspect.a006569

Moccia F, Brunetti V, Soda T, Berra-Romani R, Scarpellino G. Cracking the endothelial calcium (Ca2+) code: A matter of timing and spacing. Int J Mol Sci. 2023 Nov 26;24(23):16765. DOI: 10.3390/ijms242316765

Gorobets O, Gorobets S, Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans. Int J Nanomedicine. 2017 Jun 12;12:4371-95. DOI: 10.2147/IJN.S130565

Manjua AC, Cabral JMS, Portugal CAM, Ferreira FC. Magnetic stimulation of the angiogenic potential of mesenchymal stromal cells in vascular tissue engineering. Sci Technol Adv Mater. 2021;22(1):461-80. DOI: 10.1080/14686996.2021.1927834

Chen J, Tu C, Tang X, Li H, Yan J, Ma Y, et al. The combinatory effect of sinusoidal electromagnetic field and VEGF promotes osteogenesis and angiogenesis of mesenchymal stem cell-laden PCL/HA implants in a rat subcritical cranial defect. Stem Cell Res Ther. 2019 Dec 16;10(1):379. DOI: 10.1186/s13287-019-1464-x

Wosik J, Chen W, Qin K, Ghobrial RM, Kubiak JZ, Kloc M. Magnetic field changes macrophage phenotype. Biophys J. 2018 Apr 24;114(8):2001-13. DOI: 10.1016/j.bpj.2018.03.002

Qian AR, Gao X, Zhang W, Li JB, Wang Y, Di SM, et al. Large gradient high magnetic fields affect osteoblast ultrastructure and function by disrupting collagen I or fibronectin/αβ1 integrin. PLoS One. 2013;8(1):e51036. DOI: 10.1371/journal.pone.0051036

Downloads

Published

2024-10-06

How to Cite

1.
Gorobets S, Gorobets O, Rachek K, Ryazanova A. Effect of Magnetic Field and Magnetic Nanoparticles on Choice of Endothelial Cell Phenotype. Innov Biosyst Bioeng [Internet]. 2024Oct.6 [cited 2024Nov.7];8(3):29-4. Available from: https://ibb.kpi.ua/article/view/292667

Issue

Section

Articles