Modern Methods of Obtaining Immune Dendritic Cells With Anti-Tumor Potential

Authors

DOI:

https://doi.org/10.20535/ibb.2024.8.1.291879

Keywords:

dendritic cells, antigens, antitumor properties, cytokines, cryopreservation

Abstract

Dendritic cells (DCs) initiate and shape both innate and adaptive immune responses. They specialize in presenting antigens to naïve T cells, thereby directing T cell immune responses and contributing significantly to the maintenance of antitumor immunity. In both human and animal bodies, these cells are present in limited quantities, posing challenges in their procurement. Hence, the quest for obtaining DCs with antitumor properties in vitro from progenitor cells for clinical or experimental use remains pertinent. This research aims to consolidate existing studies on deriving immune DCs from progenitor cells for application in anticancer therapy. Analysis of published reports reveals that monocytes from peripheral blood, mononuclear cells from bone marrow, and cord blood can serve as precursor cells of immune DCs. Protocols for generating immature DCs from progenitor cells involve the addition of various combinations of cytokines to the culture, including granulocyte-macrophage colony-stimulating factor, interleukin-4, and other cytokines. The extensive range of cytokines and conditions influencing the differentiation and functional activity of DCs results in considerable heterogeneity in the phenotypic and functional characteristics of these cells. Sources of tumor antigen for DC-based vaccines encompass tumor lysates, indivi­dual tumor proteins, peptides, and tumor cells in a state of immunogenic apoptosis. This paper delves into the use of maturation factors and cryopreservation as integral stages in obtaining immune DCs. A comprehensive understanding of the parameters involved in obtaining immune DCs is imperative for the development of DC-based vaccines to unleash their full antitumor potential.

References

Dumansky YV, Chekhun VF. Oncology in Ukraine. State of the problem and ways of development. Oncology. 2022;24(3):1-6. DOI: 10.32471/oncology.2663-7928.t-24-3-2022-g.10652

Marciscano AE, Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol. 2021 Feb;52:101481. DOI: 10.1016/j.smim.2021.101481

Gardner A, de Mingo Pulido Б, Ruffell B. Dendritic cells and their role in immunotherapy. Front Immunol. 2020 May 21;11:924. DOI: 10.3389/fimmu.2020.00924

Sarivalasis A, Boudousquie C, Balint K, Stevenson BJ, Gannon PO, Iancu EM, et al. A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. J Transl Med. 2019 Nov 26;17(1):391. DOI: 10.1186/s12967-019-02133-w

Sutherland SIM, Ju X, Horvath LG, Clark GJ. Moving on from Sipuleucel-T: new dendritic cell vaccine strategies for prostate cancer. Front Immunol. 2021 Mar 29;12:641307. DOI: 10.3389/fimmu.2021.641307

Dong H, Li Q, Zhang Y, Ding M, Teng Z, Mou Y. Biomaterials facilitating dendritic cell-mediated cancer immunotherapy. Adv Sci (Weinh). 2023 Apr 23:e2301339. DOI: 10.1002/advs.202301339

Seya T, Takeda Y, Takashima K, Yoshida S, Azuma M, Matsumoto M. Adjuvant immunotherapy for cancer: both dendritic cell-priming and check-point inhibitor blockade are required for immunotherapy. Proc Jpn Acad Ser B Phys Biol Sci. 2018;94(3):153-60. DOI: 10.2183/pjab.94.011

Thomsen LCV, Honore A, Reisaeter LAR, Almas B, Borretzen A, Helle SI, et al. A phase I prospective, non-randomized trial of autologous dendritic cell-based cryoimmunotherapy in patients with metastatic castration-resistant prostate cancer. Cancer Immunol Immunother. 2023;72(7):2357-73. DOI: 10.1007/s00262-023-03421-7

Zhang W, Lu X, Cui P, Piao C, Xiao M, Liu X, et al. Phase I/II clinical trial of a Wilms' tumor 1-targeted dendritic cell vaccination-based immunotherapy in patients with advanced cancer. Cancer Immunol Immunother. 2019 Jan;68(1):121-30. DOI: 10.1007/s00262-018-2257-2

Constantino J, Gomes C, Falcao A, Cruz MT, Neves BM. Antitumor dendritic cell–based vaccines: Lessons from 20 years of clinical trials and future perspectives. Transl Res. 2016 Feb;168:74-95. DOI: 10.1016/j.trsl.2015.07.008

Fevzer T, Pozenel P, Zajc K, Tesic N, Svajger U. Combined TLR-3/TLR-8 signaling in the presence of alfa-type-1 cytokines represents a novel and potent dendritic cell type-1, anti-cancer maturation protocol. Cells. 2022 Feb 28;11(5):835. DOI: 10.3390/cells11050835

Yao CL, Tseng TY. The synergistic and enhancive effects of IL-6 and M-CSF to expand and differentiate functional dendritic cells from human monocytes under serum-free condition. J Biol Eng. 2023 Jan 26;17(1):6. DOI: 10.1186/s13036-023-00325-z

Cunningham S, Hackstein H. Recent advances in good manufacturing practice-grade generation of dendritic cells. Transfus Med Hemother. 2020 Dec;47(6):454-63. DOI: 10.1159/000512451

Torres A, Vivanco S, Lavin F, Pereda C, Chernobrovkin A, Gleisner A, et al. Haptoglobin induces a specific proteomic profile and a mature-associated phenotype on primary human monocyte-derived dendritic cells. Int J Mol Sci. 2022 Jun 21;23(13):6882. DOI: 10.3390/ijms23136882

Kim SJ, Kim G, Kim N, Chu H, Park BC, Yang JS, et al. Human CD141⁺ dendritic cells generated from adult peripheral blood monocytes. Cytotherapy. 2019 Oct;21(10):1049-63. DOI: 10.1016/j.jcyt.2019.07.007

Erra Diaz F, Mazzitelli I, Bleichmar L, Melucci C, Thibodeau A, Dalotto Moreno T, et al. Concomitant inhibition of PPARг and mTORC1 induces the differentiation of human monocytes into highly immunogenic dendritic cells. Cell Rep. 2023 Mar 28;42(3):112156. DOI: 10.1016/j.celrep.2023.112156

Chen C, He L, Wang X, Xiao R, Chen S, Ye Z, et al. Leonurine promotes the maturation of healthy donors and multiple myeloma patients derived-dendritic cells via the regulation on arachidonic acid metabolism. Front Pharmacol. 2023 Jan 23;14:1104403. DOI: 10.3389/fphar.2023.1104403

Cobb A, Roberts LK, Palucka AK, Mead H, Montes M, Ranganathan R, et al. Development of a HIV-1 lipopeptide antigen pulsed therapeutic dendritic cell vaccine. J Immunol Methods. 2011 Feb 28;365(1-2):27-37. DOI: 10.1016/j.jim.2010.11.002

Hopewell EL, Cox C. Manufacturing dendritic cells for immunotherapy: monocyte enrichment. Mol Ther Methods Clin Dev. 2020 Jan 15;16:155-60. DOI: 10.1016/j.omtm.2019.12.017

Williams H, Mack C, Baraz R, Marimuthu R, Naralashetty S, Li S, et al. Monocyte differentiation and heterogeneity: inter-subset and interindividual differences. Int J Mol Sci. 2023 May 15;24(10):8757. DOI: 10.3390/ijms24108757

Cechim G, Chies JAB. In vitro generation of human monocyte-derived dendritic cells methodological aspects in a comprehensive review. An Acad Bras Ciênc. 2019;91(4):e20190310. DOI: 10.1590/0001-3765201920190310

Bhattacharjee J, Das B, Mishra A, Sahay P, Upadhyay P. Monocytes isolated by positive and negative magnetic sorting techniques show different molecular characteristics and immunophenotypic behaviour. F1000Res. 2017 Nov 23;6:2045. DOI: 10.12688/f1000research.12802.3

Chometon TQ, Siqueira MDS, Sant Anna JC, Almeida MR, Gandini M, et al. A protocol for rapid monocyte isolation and generation of singular human monocyte-derived dendritic cells. PLoS One. 2020 Apr 9;15(4):e0231132. DOI: 10.1371/journal.pone.0231132

Marques GS, Silva Z, Videira PA. Antitumor efficacy of human monocyte-derived dendritic cells: comparing effects of two monocyte isolation methods. Biol Proced Online. 2018 Feb 2;20:4. DOI: 10.1186/s12575-018-0069-6

Obermaier B, Dauer M, Herten J, Schad K, Endres S, Eigler A. Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes. Biol Proced Online. 2003;5:197-203. DOI: 10.1251/bpo62

Dohnal AM, Graffi S, Witt V, Eichstill C, Wagner D, Ul-Haq S, et al. Comparative evaluation of techniques for the manufacturing of dendritic cell-based cancer vaccines. J Cell Mol Med. 2009 Jan;13(1):125-35. DOI: 10.1111/j.1582-4934.2008.00304.x

Delirezh N, Shojaeefar E, Parvin P, Asadi B. Comparison the effects of two monocyte isolation methods, plastic adherence and magnetic activated cell sorting methods, on phagocytic activity of generated dendritic cells. Cell J. 2013 Fall;15(3):218-23.

Plantinga M, van den Beemt DAMH, Dunnebach E, Nierkens S. CD14 expressing precursors give rise to highly functional conventional dendritic cells for use as dendritic cell vaccine. Cancers (Basel). 2021 Jul 29;13(15):3818. DOI: 10.3390/cancers13153818

He M, Soni B, Schwalie PC, Husser T, Waltzinger C, De Silva D, et al. Combinations of Toll-like receptor 8 agonist TL8-506 activate human tumor-derived dendritic cells. J Immunother Cancer. 2022 Jun;10(6):e004268. DOI: 10.1136/jitc-2021-004268

Lee KW, Yam JWP, Mao X. Dendritic cell vaccines: a shift from conventional approach to new generations. Cells. 2023 Aug 25;12(17):2147. DOI: 10.3390/cells12172147

Pi Y, Li Y, Liang R, Xiao J, Leng J, Zhang L. Generation of high cross-presentation ability human dendritic cells by combination of interleukin 4, interferon в and GM-CSF. Cent Eur J Immunol. 2022;47(2):125-38. DOI: 10.5114/ceji.2022.117767

Pulendran B, Banchereau J, Burkeholder S, Kraus E, Guinet E, Chalouni C, et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol. 2000 Jul 1;165(1):566-72. DOI: 10.4049/jimmunol.165.1.566

Santa P, Roubertie A, Loizon S, Garreau A, Ferriere A, Duluc D, et al. Enrichment of large numbers of splenic mouse dendritic cells after injection of Flt3L-producing tumor cells. In: Dendritic Cells: Methods and Protocols. New York, NY: Springer US. 2023;2618:173-86. DOI: 10.1007/978-1-0716-2938-3_13

Cueto FJ, Sancho D. The Flt3L/Flt3 axis in dendritic cell biology and cancer immunotherapy. Cancers (Basel). 2021 Mar 26;13(7):1525. DOI: 10.3390/cancers13071525

Ryu SH, Shin HS, Eum HH, Park JS, Choi W, Na HY, et al. Granulocyte macrophage-colony stimulating factor produces a splenic subset of monocyte-derived dendritic cells that efficiently polarize T helper type 2 cells in response to blood-borne antigen. Front Immunol. 2022 Jan 3;12:767037. DOI: 10.3389/fimmu.2021.767037

Linehan JL, Dileepan T, Kashem SW, Kaplan DH, Cleary P, Jenkins MK. Generation of Th17 cells in response to intranasal infection requires TGF-beta1 from dendritic cells and IL-6 from CD301b+ dendritic cells. Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12782-7. DOI: 10.1073/pnas.1513532112

Andreu-Sanz D, Kobold S. Role and potential of different T helper cell subsets in adoptive cell therapy. Cancers (Basel). 2023 Mar 8;15(6):1650. DOI: 10.3390/cancers15061650

Bol KF, Schreibelt G, Rabold K, Wculek SK, Schwarze JK, Dzionek A, et al. The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. J Immunother Cancer. 2019 Apr 18;7(1):109. DOI: 10.1186/s40425-019-0580-6

Schreibelt G, Bol KF, Westdorp H, Wimmers F, Aarntzen EH, Duiveman-de Boer T, et al. Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells. Clin Cancer Res. 2016;22(9):2155-66. DOI: 10.1158/1078-0432.CCR-15-2205

Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994 Apr 1;179(4):1109-18. DOI: 10.1084/jem.179.4.1109

Vento-Tormo R, Company C, Rodríguez-Ubreva J, de la Rica L, Urquiza JM, Javierre BM, et al. IL-4 orchestrates STAT6-mediated DNA demethylation leading to dendritic cell differentiation. Genome Biol. 2016;17:4. DOI: 10.1186/s13059-015-0863-2

Hiasa M, Abe M, Nakano A, Oda A, Amou H, Kido S, et al. GM-CSF and IL-4 induce dendritic cell differentiation and disrupt osteoclastogenesis through M-CSF receptor shedding by up-regulation of TNF-alpha converting enzyme (TACE). Blood. 2009 Nov 12;114(20):4517-26. DOI: 10.1182/blood-2009-04-215020

Goltsev AN, Dubrava TG, Yampolskaya EE, Gayevskaya YA, Babenko NN, Bondarovich NA, et al. The optimization method of isolation of immature dendritic cells. Fiziol Zh. 2018;64(6):32-9. DOI: 10.15407/fz64.06.032

Wang S, Sun X, Zhou H, Zhu Z, Zhao W, Zhu C. Interleukin-4 affects the mature phenotype and function of rat bone marrow-derived dendritic cells. Mol Med Rep. 2015 Jul;12(1):233-7. DOI: 10.3892/mmr.2015.3349

Sun M, Wu J, Liu W. Profiling changes in microRNAs of immature dendritic cells differentiated from human monocytes. Cent Eur J Immunol. 2021;46(1):10-6. DOI: 10.5114/ceji.2021.105241

Della Bella S, Nicola S, Riva A, Biasin M, Clerici M, Villa ML. Functional repertoire of dendritic cells generated in granulocyte macrophage-colony stimulating factor and interferon-alpha. J Leukoc Biol. 2004;75(1):106-16. DOI: 10.1189/jlb.0403154

Santillo BT, Reis DDS, da Silva LT, Romani NT, Duarte AJDS, Oshiro TM. Phenotypic and functional profile of IFN-α-differentiated dendritic cells (IFN-DCs) from HIV-infected individuals. Hum Vaccin Immunother. 2019;15(9):2140-49. DOI: 10.1080/21645515.2018.1547603

Fan J, Wu Y, Jiang M, Wang L, Yin D, Zhang Y, et al. IFN-DC Loaded with autophagosomes containing virus antigen is highly efficient in inducing virus-specific human T cells. Int J Med Sci. 2019 May 10;16(5):741-50. DOI: 10.7150/ijms.31830

Lapenta C, Gabriele L, Santini SM. IFN-alpha-mediated differentiation of dendritic cells for cancer immunotherapy: advances and perspectives. Vaccines (Basel). 2020 Oct 19;8(4):617. DOI: 10.3390/vaccines8040617

Ashour D, Arampatzi P, Pavlovic V, Förstner KU, Kaisho T, Beilhack A, et al. IL-12 from endogenous cDC1, and not vaccine DC, is required for Th1 induction. JCI Insight. 2020 May 21;5(10):e135143. DOI: 10.1172/jci.insight.135143

Chomarat P, Dantin C, Bennett L, Banchereau J, Palucka AK. TNF skews monocyte differentiation from macrophages to dendritic cells. J Immunol. 2003 Sep 1;171(5):2262-9. DOI: 10.4049/jimmunol.171.5.2262

Iwamoto S, Iwai S, Tsujiyama K, Kurahashi C, Takeshita K, Naoe M, et al A. TNF-alpha drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses. J Immunol. 2007 Aug 1;179(3):1449-57. DOI: 10.4049/jimmunol.179.3.1449

Shortman K, Caux C. Dendritic cell development: multiple pathways to nature's adjuvants. Stem Cells. 1997;15(6):409-19. DOI: 10.1002/stem.150409

Siena S, Di Nicola M, Bregni M, Mortarini R, Anichini A, Lombardi L, et al. Massive ex vivo generation of functional dendritic cells from mobilized CD34+ blood progenitors for anticancer therapy. Exp Hematol. 1995 Dec;23(14):1463-71.

Chabot V, Martin L, Meley D, Sensebe L, Baron C, Lebranchu Y, et al. Unexpected impairment of TNF-alfa-induced maturation of human dendritic cells in vitro by IL-4. J Transl Med. 2016 Apr 14;14:93. DOI: 10.1186/s12967-016-0848-2

Chrisikos TT, Zhou Y, Li HS, Babcock RL, Wan X, Patel B, et al. STAT3 Inhibits CD103+ cDC1 vaccine efficacy in murine breast cancer. Cancers (Basel). 2020 Jan 4;12(1):128. DOI: 10.3390/cancers12010128

Zhou Y, Slone N, Chrisikos TT, Kyrysyuk O, Babcock RL, Medik YB, et al. Vaccine efficacy against primary and metastatic cancer with in vitro-generated CD103+ conventional dendritic cells. J Immunother Cancer. 2020 Apr;8(1):e000474. DOI: 10.1136/jitc-2019-000474

Chu TH, Vo MC, Lakshmi TJ, Ahn SY, Kim M, Song GY, et al. Novel IL-15 dendritic cells have a potent immunomodulatory effect in immunotherapy of multiple myeloma. Transl Oncol. 2022 Jun;20:101413. DOI: 10.1016/j.tranon.2022.101413

Mohamadzadeh M, Berard F, Essert G, Chalouni C, Pulendran B, Davoust J, et al. Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells. J Exp Med. 2001;194(7):1013-20. DOI: 10.1084/jem.194.7.1013

Van Acker HH, Anguille S, De Reu H, Berneman ZN, Smits EL, Van Tendeloo VF. Interleukin-15-cultured dendritic cells enhance anti-tumor gamma delta T cell functions through IL-15 secretion. Front Immunol. 2018 Apr 10;9:658. DOI: 10.3389/fimmu.2018.00658

Van Acker HH, Anguille S, Willemen Y, Van den Bergh JM, Berneman ZN, Lion E, et al. Interleukin-15 enhances the proliferation, stimulatory phenotype, and antitumor effector functions of human gamma delta T cells. J Hematol Oncol. 2016 Sep 29;9(1):101. DOI: 10.1186/s13045-016-0329-3

Mookerjee A, Graciotti M, Kandalaft LE. IL-15 and a two-step maturation process improve bone marrow-derived dendritic cell cancer vaccine. Cancers (Basel). 2019 Jan 4;11(1):40. DOI: 10.3390/cancers11010040

Sanarico N, Ciaramella A, Sacchi A, Bernasconi D, Bossù P, Mariani F, et al. Human monocyte-derived dendritic cells differentiated in the presence of IL-2 produce proinflammatory cytokines and prime Th1 immune response. J Leukoc Biol. 2006 Sep;80(3):555-62. DOI: 10.1189/jlb.1105690

Ni X, Austin M, Langridge T, Bojaxhi P, Bijani P, Wang X, Duvic M. CD209+ monocyte-derived myeloid dendritic cells were increased in patients with leukemic cutaneous T-cell lymphoma undergoing extracorporeal photopheresis via the CELLEXTM system. Photodermatol Photoimmunol Photomed. 2020 Jul;36(4):290-8. DOI: 10.1111/phpp.12552

Ma DY, Clark EA. The role of CD40 and CD154/CD40L in dendritic cells. Semin Immunol. 2009 Oct;21(5):265-72. DOI: 10.1016/j.smim.2009.05.010

Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun. 2019 Nov 27;10(1):5408. DOI: 10.1038/s41467-019-13368-y

Bourque J, Hawiger D. Activation, amplification, and ablation as dynamic mechanisms of dendritic cell maturation. Biology (Basel). 2023 May 14;12(5):716. DOI: 10.3390/biology12050716

Koch EAT, Schaft N, Kummer M, Berking C, Schuler G, Hasumi K, et al. A one-armed phase I dose escalation trial design: personalized vaccination with IKKв-matured, RNA-loaded dendritic cells for metastatic uveal melanoma. Front Immunol. 2022 Feb 4;13:785231. DOI: 10.3389/fimmu.2022.785231

Wu X, Xu F, Liu J, Wang G. Comparative study of dendritic cells matured by using IL-1в, IL-6, TNF-б and prostaglandins E2 for different time span. Exp Ther Med. 2017 Aug;14(2):1389-94. DOI: 10.3892/etm.2017.4649

Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature. 1997 Aug 21;388(6644):782-7. DOI: 10.1038/42030

Ridolfi R, Riccobon A, Galassi R, Giorgetti G, Petrini M, Fiammenghi L, et al. Evaluation of in vivo labelled dendritic cell migration in cancer patients. J Transl Med. 2004 Jul 30;2(1):27. DOI: 10.1186/1479-5876-2-27

Bоdder J, Kok LM, Fauerbach JA, Flуrez-Grau G, de Vries IJM. Tailored PGE2 immunomodulation of moDCs by nano-encapsulated EP2/EP4 antagonists. Int J Mol Sci. 2023 Jan 11;24(2):1392. DOI: 10.3390/ijms24021392

Arts N, Cane S, Hennequart M, Lamy J, Bommer G, Van den Eynde B, et al. microRNA-155, induced by interleukin-1beta, represses the expression of microphthalmia-associated transcription factor (MITF-M) in melanoma cells. PLoS One. 2015 Apr 8;10(4):e0122517. DOI: 10.1371/journal.pone.0122517

Hodge J, Wang F, Wang J, Liu Q, Saaoud F, Wang Y, et al. Overexpression of microRNA-155 enhances the efficacy of dendritic cell vaccine against breast cancer. Oncoimmunology. 2020 Feb 9;9(1):1724761. DOI: 10.1080/2162402X.2020.1724761

Li Y, Yu X, Ma Y, Hua S. IL-23 and dendritic cells: What are the roles of their mutual attachment in immune response and immunotherapy? Cytokine. 2019 Aug;120:78-84. DOI: 10.1016/j.cyto.2019.02.018

Schinocca C, Rizzo C, Fasano S, Grasso G, La Barbera L, Ciccia F, et al. Role of the IL-23/IL-17 pathway in rheumatic diseases: An overview. Front Immunol. 2021 Feb 22;12:637829. DOI: 10.3389/fimmu.2021.637829

Hou Y, Zhu L, Tian H, Sun HX, Wang R, Zhang L, et al. IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis. Protein Cell. 2018 Dec;9(12):1027-38. DOI: 10.1007/s13238-018-0505-z

Zhang AL, Colmenero P, Purath U, Teixeira de Matos C, Hueber W, Klareskog L, et al. Natural killer cells trigger differentiation of monocytes into dendritic cells. Blood. 2007 Oct 1;110(7):2484-93. DOI: 10.1182/blood-2007-02-076364

Surendran N, Simmons A, Pichichero ME. TLR agonist combinations that stimulate Th type I polarizing responses from human neonates. Innate Immun. 2018 May;24(4):240-51. DOI: 10.1177/1753425918771178

Gierlich P, Lex V, Technau A, Keupp A, Morper L, Glunz A, et al. Prostaglandin E2 in a TLR3- and 7/8-agonist-based DC maturation cocktail generates mature, cytokine-producing, migratory DCs but impairs antigen cross-presentation to CD8+ T cells. Cancer Immunol Immunother. 2020 Jun;69(6):1029-42. DOI: 10.1007/s00262-019-02470-1

Jang HJ, Song KD. Expression patterns of innate immunity-related genes in response to polyinosinic:polycytidylic acid (poly[I:C]) stimulation in DF-1 chicken fibroblast cells. J Anim Sci Technol. 2020;62(3):385-95. DOI: 10.5187/jast.2020.62.3.385

Liu Y, Mo CF, Luo XY, Li H, Guo HJ, Sun H, et al. Activation of Toll-like receptor 3 induces interleukin-1 receptor antagonist expression by activating the interferon regulatory factor 3. J Innate Immun. 2020;12(4):304-20. DOI: 10.1159/000504321

Frankenberger B, Schendel DJ. Third generation dendritic cell vaccines for tumor immunotherapy. Eur J Cell Biol. 2012 Jan;91(1):53-8. DOI: 10.1016/j.ejcb.2011.01.012

Hanel G, Angerer C, Petry K, Lichtenegger FS, Subklewe M. Blood DCs activated with R848 and poly(I:C) induce antigen-specific immune responses against viral and tumor-associated antigens. Cancer Immunol Immunother. 2022 Jul;71(7):1705-18. DOI: 10.1007/s00262-021-03109-w

Pearson FE, Chang K, Minoda Y, Rojas IML, Haigh OL, Daraj G, et al. Activation of human CD141+ and CD1c+ dendritic cells in vivo with combined TLR3 and TLR7/8 ligation. Immunol Cell Biol. 2018 Apr;96(4):390-400. DOI: 10.1111/imcb.12009

Bian Y, Walter DL, Zhang C. Efficiency of interferon-gamma in activating dendritic cells and its potential synergy with Toll-like receptor agonists. Viruses. 2023 May 19;15(5):1198. DOI: 10.3390/v15051198

Krakow S, Crescimone ML, Bartels C, Wiegering V, Eyrich M, Schlegel PG, et al. Re-expression of CD14 in response to a combined IL-10/TLR stimulus defines monocyte-derived cells with an immunoregulatory phenotype. Front Immunol. 2019 Jun 28;10:1484. DOI: 10.3389/fimmu.2019.01484

Schmitt S, Tahk S, Lohner A, Hanel G, Maiser A, Hauke M, et al. Fusion of bacterial flagellin to a dendritic cell-targeting alfaCD40 antibody construct coupled with viral or leukemia-specific antigens enhances dendritic cell maturation and activates peptide-responsive T cells. Front Immunol. 2020 Nov 12;11:602802. DOI: 10.3389/fimmu.2020.602802

Karnell JL, Rieder SA, Ettinger R, Kolbeck R. Targeting the CD40-CD40L pathway in autoimmune diseases: Humoral immunity and beyond. Adv Drug Deliv Rev. 2019 Feb 15;141:92-103. DOI: 10.1016/j.addr.2018.12.005

Elmetwali T, Salman A, Wei W, Hussain SA, Young LS, Palmer DH. CD40L membrane retention enhances the immunostimulatory effects of CD40 ligation. Sci Rep. 2020 Jan 15;10(1):342. DOI: 10.1038/s41598-019-57293-y

Hillebrand RM, Vogt A, Strassburg CP, Gonzalez-Carmona MA, Schmidt-Wolf IGH. Immune check point CD40-CD40L activates dendritic and effector cells against human renal carcinoma cells. Anticancer Res. 2019 Sep;39(9):4643-52. DOI: 10.21873/anticanres.13645

Wang X, Dai J, Xia J, Ye Z, Huang X, Cao W, et al. Pomalidomide enhances the maturation of dendritic cells derived from healthy donors and multiple myeloma patients. Front Pharmacol. 2022 Dec 5;13:1076096. DOI: 10.3389/fphar.2022.1076096

Cao WJ, Dai JY, Dong WJ, Wang X, Wang XD, Xia JY, et al. [Effects of Dasatinib on the maturation of monocyte-derived dendritic cells derived from healthy donors and chronic myelogenous leukemia patients]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2022 Jun;30(3):677-87. DOI: 10.19746/j.cnki.issn.1009-2137.2022.03.004

Zheng SE, Jin J, Tong XM. [Effects of Imatinib mesylate on the development of dendritic cells derived from bone marrow mononuclear cells of patients with chronic myeloid leukemia]. Zhonghua Yi Xue Za Zhi. 2006 Aug 29;86(32):2252-5. DOI: 10.3760/J:ISSN:0376-2491.2006.32.006

Cho SY, Jeong SM, Jeon YJ, Yang SJ, Hwang JE, Yoo BM, et al. WT1 pulsed human CD141+ dendritic cell vaccine has high potential in solid tumor-targeted immunotherapy. Int J Mol Sci. 2023 Jan 12;24(2):1501. DOI: 10.3390/ijms24021501

Stakheev D, Taborska P, Kalkusova K, Bartunkova J, Smrz D. LL-37 as a powerful molecular tool for boosting the performance of ex vivo-produced human dendritic cells for cancer immunotherapy. Pharmaceutics. 2022 Dec 8;14(12):2747. DOI: 10.3390/pharmaceutics14122747

Findlay EG, Currie AJ, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8(8):1608106. DOI: 10.1080/2162402X.2019.1608106

Guinan J, Lopez BS. Generating bovine monocyte-derived dendritic cells for experimental and clinical applications using commercially available serum-free medium. Front Immunol. 2020 Oct 16;11:591185. DOI: 10.3389/fimmu.2020.591185

Cunha P, Gilbert FB, Bodin J, Godry L, Germon P, Holbert S, et al. Simplified approaches for the production of monocyte-derived dendritic cells and study of antigen presentation in bovine. Front Vet Sci. 2022;9:891893. DOI: 10.3389/fvets.2022.891893

Calmeiro J, Mendes L, Duarte IF, Leitгo C, Tavares AR, Ferreira DA, et al. In-depth analysis of the impact of different serum-free media on the production of clinical grade dendritic cells for cancer immunotherapy. Front Immunol. 2021 Feb 5;11:593363. DOI: 10.3389/fimmu.2020.593363

Svajger U. Human platelet lysate is a successful alternative serum supplement for propagation of monocyte-derived dendritic cells. Cytotherapy. 2017 Apr;19(4):486-99. DOI: 10.1016/j.jcyt.2017.01.005

Tesic N, Pekle Simonic I, Roskar K, Rozman P, Svajger U. Dendritic cells generated in the presence of platelet lysate have a reduced type 1 polarization capacity. Immunol Invest. 2020 Apr;49(3):215-31. DOI: 10.1080/08820139.2019.1624768

Datsi A, Sorg RV. Dendritic cell vaccination of glioblastoma: road to success or dead end. Front Immunol. 2021 Nov 2;12:770390. DOI: 10.3389/fimmu.2021.770390

Nelson NLJ, Zajd CM, Lennartz MR, Gosselin EJ. Fcг receptors and toll-like receptor 9 synergize to drive immune complex-induced dendritic cell maturation. Cell Immunol. 2019 Nov;345:103962. DOI: 10.1016/j.cellimm.2019.103962

Zhang X, He T, Li Y, Chen L, Liu H, Wu Y, et al. Dendritic cell vaccines in ovarian cancer. Front Immunol. 2021 Jan 25;11:613773. DOI: 10.3389/fimmu.2020.613773

Rapp M, Grauer OM, Kamp M, Sevens N, Zotz N, Sabel M, et al. A randomized controlled phase II trial of vaccination with lysate-loaded, mature dendritic cells integrated into standard radiochemotherapy of newly diagnosed glioblastoma (GlioVax): study protocol for a randomized controlled trial. Trials. 2018 May 25;19(1):293. DOI: 10.1186/s13063-018-2659-7

Westdorp H, Creemers JHA, van Oort IM, Schreibelt G, Gorris MAJ, Mehra N, et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J Immunother Cancer. 2019 Nov 14;7(1):302. DOI: 10.1186/s40425-019-0787-6

Date I, Koya T, Sakamoto T, Togi M, Kawaguchi H, Watanabe A, et al. Interferon-alfa-induced dendritic cells generated with human platelet lysate exhibit elevated antigen presenting ability to cytotoxic T lymphocytes. Vaccines (Basel). 2020 Dec 24;9(1):10. DOI: 10.3390/vaccines9010010

Jarnjak-Jankovic S, Pettersen RD, Saebøe-Larssen S, Wesenberg F, Olafsen MR, Gaudernack G. Preclinical evaluation of autologous dendritic cells transfected with mRNA or loaded with apoptotic cells for immunotherapy of high-risk neuroblastoma. Cancer Gene Ther. 2005 Aug;12(8):699-707. DOI: 10.1038/sj.cgt.7700820

Van Tendeloo VF, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C, et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood. 2001 Jul 1;98(1):49-56. DOI: 10.1182/blood.v98.1.49

Suso EM, Dueland S, Rasmussen AM, Vetrhus T, Aamdal S, Kvalheim G, et al. hTERT mRNA dendritic cell vaccination: complete response in a pancreatic cancer patient associated with response against several hTERT epitopes. Cancer Immunol Immunother. 2011 Jun;60(6):809-18. DOI: 10.1007/s00262-011-0991-9

Dorrie J, Schaft N, Schuler G, Schuler-Thurner B. Therapeutic cancer vaccination with ex vivo rna-transfected dendritic cells-an update. Pharmaceutics. 2020 Jan 23;12(2):92. DOI: 10.3390/pharmaceutics12020092

Joshi A, Tandel N, Tyagi P, Dalai SK, Bisen PS, Tyagi RK. RNA-loaded dendritic cells: more than a tour de force in cancer therapeutics. Immunotherapy. 2019 Sep;11(13):1129-47. DOI: 10.2217/imt-2019-0058

Saadeldin MK, Abdel-Aziz AK, Abdellatif A. Dendritic cell vaccine immunotherapy; the beginning of the end of cancer and COVID-19. A hypothesis. Med Hypotheses. 2021 Jan;146:110365. DOI: 10.1016/j.mehy.2020.110365

Diao L, Liu M. Rethinking antigen source: cancer vaccines based on whole tumor cell/tissue lysate or whole tumor cell. Adv Sci (Weinh). 2023 Aug;10(22):e2300121. DOI: 10.1002/advs.202300121

Dillman RO, Cornforth AN, McClay EF, Depriest C. Patient-specific dendritic cell vaccines with autologous tumor antigens in 72 patients with metastatic melanoma. Melanoma Manag. 2019 May 31;6(2):MMT20. DOI: 10.2217/mmt-2018-0010

Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M, Luoma AM, et al. MHC-II neo-antigens shape tumour immunity and response to immunotherapy. Nature. 2019 Oct;574(7780):696-701. DOI: 10.1038/s41586-019-1671-8

Bayik D, Lathia JD. Cancer stem cell-immune cell crosstalk in tumour progression. Nat Rev Cancer. 2021 Aug;21(8):526-36. DOI: 10.1038/s41568-021-00366-w

Liao F, Zhang J, Hu Y, Najafabadi AH, Moon JJ, Wicha MS, et al. Efficacy of an ALDH peptide-based dendritic cell vaccine targeting cancer stem cells. Cancer Immunol Immunother. 2022 Aug;71(8):1959-73. DOI: 10.1007/s00262-021-03129-6

El-Ashmawy NE, Salem ML, Abd El-Fattah EE, Khedr EG. Targeting CD166+ lung cancer stem cells: Molecular study using murine dendritic cell vaccine. Toxicol Appl Pharmacol. 2021 Oct 15;429:115699. DOI: 10.1016/j.taap.2021.115699

Acikgoz E, Duzagac F, Guven U, Yigitturk G, Kose T, Oktem G. "Double hit" strategy: removal of sialic acid from the dendritic cell surface and loading with CD44+/CD24-/low cell lysate inhibits tumor growth and metastasis by targeting breast cancer stem cells. Int Immunopharmacol. 2022 Jun;107:108684. DOI: 10.1016/j.intimp.2022.108684

Boudousquie C, Boand V, Lingre E, Dutoit L, Balint K, Danilo M, et al. Development and optimization of a GMP-compliant manufacturing process for a personalized tumor lysate dendritic cell vaccine. Vaccines (Basel). 2020 Jan 14;8(1):25. DOI: 10.3390/vaccines8010025

Galletta L, Craven MJ, Meillere A, Crowley TM, Buchanan KL, Mariette MM. Acute exposure to high temperature affects expression of heat shock proteins in altricial avian embryos. J Therm Biol. 2022;110:103347. DOI: 10.1016/j.jtherbio.2022.103347

Kurien BT, Scofield RH. Autoimmunity and oxidatively modified autoantigens. Autoimmun Rev. 2008 Jul;7(7):567-73. DOI: 10.1016/j.autrev.2008.04.019

Kurien BT, Hensley K, Bachmann M, Scofield RH. Oxidatively modified autoantigens in autoimmune diseases. Free Radic Biol Med. 2006 Aug 15;41(4):549-56. DOI: 10.1016/j.freeradbiomed.2006.05.020

Baust JG, Gage AA, Bjerklund Johansen TE, Baust JM. Mechanisms of cryoablation: clinical consequences on malignant tumors. Cryobiology. 2014 Feb;68(1):1-11. DOI: 10.1016/j.cryobiol.2013.11.001

Len JS, Koh WSD, Tan SX. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep. 2019 Aug 29;39(8):BSR20191601. DOI: 10.1042/BSR20191601

Chiang CLL, Kandalaft LE, Tanyi J, Hagemann AR, Motz GT, Svoronos N, et al. A Dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res. 2013;19(17):4801-15. DOI: 10.1158/1078-0432.CCR-13-1185

Xiang J, Wan C, Guo R, Guo D. Is hydrogen peroxide a suitable apoptosis inducer for all cell types? Biomed Res Int. 2016;2016:7343965. DOI: 10.1155/2016/7343965

Sun C, Wang H, Mao S, Liu J, Li S, Wang J. Reactive oxygen species involved in CT26 immunogenic cell death induced by Clostridium difficile toxin B. Immunol Lett. 2015 Apr;164(2):65-71. DOI: 10.1016/j.imlet.2015.02.007

Vo MC, Lee HJ, Kim JS, Hoang MD, Choi NR, Rhee JH, et al. Dendritic cell vaccination with a toll-like receptor agonist derived from mycobacteria enhances anti-tumor immunity. Oncotarget. 2015;6(32):33781-90. DOI: 10.18632/oncotarget.5281

Ueno H, Klechevsky E, Morita R, Aspord C, Cao T, Matsui T, et al. Dendritic cell subsets in health and disease. Immunol Rev. 2007 Oct;219:118-42. DOI: 10.1111/j.1600-065X.2007.00551.x

Unal A, Birekul A, Unal MC, Karakus E, Köker Y, Ozkul Y, et al. Dendritic cell production from allogeneic donor CD34+ stem cells and mononuclear cells; cancer vaccine. Blood. 2016;128(22):5723. DOI: 10.1182/blood.v128.22.5723.5723

Wang X, Guan F, Miller H, Byazrova MG, Cndotti F, Benlagha K, et al. The role of dendritic cells in COVID-19 infection. Emerg Microbes Infect. 2023 Dec;12(1):2195019. DOI: 10.1080/22221751.2023.2195019

Kim MK, Kim J. Properties of immature and mature dendritic cells: phenotype, morphology, phagocytosis, and migration. RSC Adv. 2019 Apr 10;9(20):11230-8. DOI: 10.1039/c9ra00818g

Calmeiro J, Carrascal MA, Tavares AR, Ferreira DA, Gomes C, Falcгo A, et al. Dendritic cell vaccines for cancer immunotherapy: the role of human conventional type 1 dendritic cells. Pharmaceutics. 2020;12(2):158. DOI: 10.3390/pharmaceutics12020158

Cao H, Verg V, Martinache C, Leon A, Gorin NC, Bernard J, et al. Cryopreservation of dendritic cells grown in vitro from monocytes for their future clinical use. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2000 Dec;8(4):245-50.

Usero L, Miralles L, Esteban I, Pastor-Quiсones C, Maleno MJ, Leal L, et al. Feasibility of using monocyte-derived dendritic cells obtained from cryopreserved cells for DC-based vaccines. J Immunol Methods. 2021;498:113133. DOI: 10.1016/j.jim.2021.113133

Hayden H, Friedl J, Dettke M, Sachet M, Hassler M, Dubsky P, et al. Cryopreservation of monocytes is superior to cryopreservation of immature or semi-mature dendritic cells for dendritic cell-based immunotherapy. J Immunother. 2009 Jul-Aug;32(6):638-54. DOI: 10.1097/CJI.0b013e3181a5bc13

Feuerstein B, Berger TG, Maczek C, Röder C, Schreiner D, Hirsch U, et al. A method for the production of cryopreserved aliquots of antigen-preloaded, mature dendritic cells ready for clinical use. J Immunol Methods. 2000 Nov 1;245(1-2):15-29. DOI: 10.1016/s0022-1759(00)00269-6

Shinde P, Khan N, Melinkeri S, Kale V, Limaye L. Freezing of dendritic cells with trehalose as an additive in the conventional freezing medium results in improved recovery after cryopreservation. Transfusion. 2019;59(2):686-96. DOI: 10.1111/trf.15028

Tuyaerts S, Noppe SM, Corthals J, Breckpot K, Heirman C, De Greef C, et al. Generation of large numbers of dendritic cells in a closed system using Cell Factories. J Immunol Methods. 2002 Jun 1;264(1-2):135-51. DOI: 10.1016/s0022-1759(02)00099-6

John J, Dalgleish A, Melcher A, Pandha H. Cryopreserved dendritic cells for intratumoral immunotherapy do not require re-culture prior to human vaccination. J Immunol Methods. 2005 Apr;299(1-2):37-46. DOI: 10.1016/j.jim.2004.12.014

Shahid MA, Kim WH, Kweon OK. Cryopreservation of heat-shocked canine adipose-derived mesenchymal stromal cells with 10% dimethyl sulfoxide and 40% serum results in better viability, proliferation, anti-oxidation, and in-vitro differentiation. Cryobiology. 2020 Feb 1;92:92-102. DOI: 10.1016/j.cryobiol.2019.11.040

Kysielova H, Yampolska K, Dubrava T, Lutsenko O, Bondarovych M, et al. Improvement of bone marrow mononuclear cells cryopreservation methods to increase the efficiency of dendritic cell production. Cryobiology. 2022 Jun;106:122-30. DOI: 10.1016/j.cryobiol.2022.02.004

Lewalle P, Rouas R, Lehmann F, Martiat P. Freezing of dendritic cells, generated from cryopreserved leukaphereses, does not influence their ability to induce antigen-specific immune responses or functionally react to maturation stimuli. J Immunol Methods. 2000;240(1-2):69-78. DOI: 10.1016/s0022-1759(00)00173-3

Crapo PM, Medberry CJ, Reing JE, Tottey S, van der Merwe Y, Jones KE, et al. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials. 2012 May;33(13):3539-47. DOI: 10.1016/j.biomaterials.2012.01.044

Zhou Q, Zhang Y, Zhao M, Wang X, Ma C, Jiang X, et al. Mature dendritic cell derived from cryopreserved immature dendritic cell shows impaired homing ability and reduced anti-viral therapeutic effects. Sci Rep. 2016 Dec 13;6:39071. DOI: 10.1038/srep39071

Hu MC, Siegelman MH, Holzmann B, Crowe DT, Weissman IL. Lymphocyte homing receptors. Cold Spring Harb Symp Quant Biol. 1992;57:291-308. DOI: 10.1101/sqb.1992.057.01.034

John J, Hutchinson J, Dalgleish A, Pandha H. Cryopreservation of immature monocyte-derived dendritic cells results in enhanced cell maturation but reduced endocytic activity and efficiency of adenoviral transduction. J Immunol Methods. 2003 Jan 15;272(1-2):35-48. DOI: 10.1016/s0022-1759(02)00430-1

Meijerink M, Ulluwishewa D, Anderson RC, Wells JM. Cryopreservation of monocytes or differentiated immature DCs leads to an altered cytokine response to TLR agonists and microbial stimulation. J Immunol Methods. 2011 Oct 28;373(1-2):136-42. DOI: 10.1016/j.jim.2011.08.010

Goltsev AN, Grischenko VI, Sirous MA, Lutsenko ED, Goltsev KA. Cryopreservation: an optimizing factor for therapeutic potential of fetoplacental complex products. Biopreserv Biobank. 2009 Mar;7(1):29-38. DOI: 10.1089/bio.2009.0701.ang

Goltsev A, Yampolska K, Kisielova H, Оstankov M, Dubrava T, Babenko N, et al. Cryopreservation as biotechnological application of dendritic cells in clinical practice. Probl Cryobiol Cryomed. 2021;31(4):289-303. DOI: 10.15407/cryo31.04.289

Nishioka Y, Hirao M, Robbins PD, Lotze MT, Tahara H. Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res. 1999 Aug 15;59(16):4035-41.

Krzastek SC, Goliadze E, Zhou S, Petrossian A, Youniss F, Sundaresan G, et al. Dendritic cell trafficking in tumor-bearing mice. Cancer Immunol Immunother. 2018 Dec;67(12):1939-47. DOI: 10.1007/s00262-018-2187-z

Yao W, Li Y, Zeng L, Zhang X, Zhou Z, Zheng M, et al. Intratumoral injection of dendritic cells overexpressing interleukin-12 inhibits melanoma growth. Oncol Rep. 2019 Jul;42(1):370-76. DOI: 10.3892/or.2019.7165

Fu C, Tian G, Duan J, Liu K, Zhang C, Yan W, et al. Therapeutic antitumor efficacy of cancer stem cell-derived DRibble vaccine on colorectal carcinoma. Int J Med Sci. 2021 Jul 23;18(14):3249-60. DOI: 10.7150/ijms.61510

Salem ML, Nassef M, Gomaa S, Essa I. Synergistic combination of murine bone marrow-derived dendritic cells loaded ex vivo with whole tumor lysate and systemic chemotherapy mediates antitumor immune responses in vivo. Biomed Pharmacother. 2017 Sep;93:286-95. DOI: 10.1016/j.biopha.2017.06.046

Yurkovetsky ZR, Yurkovetsky GN. Trafficking of dendritic cells in the tumor environment. In: Shurin MR, Satler RD, editors. Dendritic cells in cancer. New York, NY: Springer US; 2009. pp. 271-89. DOI: 10.1007/978-0-387-88611-4_19

Castiello L, Aricт E, D'Agostino G, Santodonato L, Belardelli F. In situ vaccination by direct dendritic cell inoculation: the coming of age of an old idea? Front Immunol. 2019 Sep 25;10:2303. DOI: 10.3389/fimmu.2019.02303

Chang H, Chew SWT, Zheng M, Lio DCS, Wiraja C, Mei Y, et al. Cryomicroneedles for transdermal cell delivery. Nat Biomed Eng. 2021 Sep;5(9):1008-18. DOI: 10.1038/s41551-021-00720-1

Chang H, Wen X, Li Z, Ling Z, Zheng Y, Xu C. Co-delivery of dendritic cell vaccine and anti-PD-1 antibody with cryomicroneedles for combinational immunotherapy. Bioeng Transl Med. 2022 Nov 27;8(5):e10457. DOI: 10.1002/btm2.10457

Published

2024-03-18

How to Cite

1.
Goltsev A, Bondarovych M, Gaevska Y, Dubrava T, Babenko N, Ostankov M. Modern Methods of Obtaining Immune Dendritic Cells With Anti-Tumor Potential. Innov Biosyst Bioeng [Internet]. 2024Mar.18 [cited 2025Jan.2];8(1):56-7. Available from: https://ibb.kpi.ua/article/view/291879

Issue

Section

Articles