Electrical Energy Generation by Microbial Fuel Cells With Microalgae on the Cathode

Authors

DOI:

https://doi.org/10.20535/ibb.2024.8.1.290311

Keywords:

microbial fuel cell, biofilm, bioanode, biocathode, microalgae

Abstract

Background. The possibility of converting organic compounds into electrical energy in microbial fuel cells (MFCs) makes MFCs a promising eco-friendly technology. However, the use of platinum or hexacyanoferrates may increase costs or lead to secondary environmental pollution. The use of microalgae in the cathode chamber is a promising solution to these problems.

Objective. We aimed to establish the dependence of electrical energy generation and the efficiency of the appli­cation of a specific type of algae on the type and mode of lighting.

Methods. In the study, two-chamber H-type MFC with salt bridge was used. Fermented residue after methanogenesis was used as inoculum in the anode chamber, and microalgae cultures Chlorella vulgaris, Desmodesmus armatus, and Parachlorella kessleri were used as inoculum in the cathode chamber.

Results. MFCs with microalgae demonstrate the ability to generate current under different light sources. The maximum voltage for the MFC with an anode biofilm and with microalgae in the cathode chamber is 13–15% lower compared to the MFC with an abiotic cathode (840 ± 42 mV). The maximum current is 2–6% lower than the control (480 ± 24 mA) for the MFC with Chlorella vulgaris and the MFC with Parachlorella kessleri, and 8% higher for the MFC with Desmodesmus armatus compared to the MFC with an abiotic cathode. The MFCs with microalgae are capable of generating electrical energy for an extended period.

Conclusions. With a pre-grown anodic biofilm, both the current and voltage maintain relative stability when the light source is changed. The potential use of solar lighting broadens the applicability of the MFCs with microalgae, as it eliminates the need for additional costs associated with artificial light sources.

References

The Paris Agreement – Publication [Internet]. United nationos Climate Change [cited 2023 Aug 7]. Available from: https://unfccc.int/documents/184656

Christwardana M, Hadiyanto H, Motto SA, Sudarno S, Haryani K. Performance evaluation of yeast-assisted microalgal microbial fuel cells on bioremediation of cafeteria wastewater for electricity generation and microalgae biomass production. Biomass Bioenergy. 2020;139(105617):105617. DOI: 10.1016/j.biombioe.2020.105617

Gude VG. Wastewater treatment in microbial fuel cells – an overview. J Clean Prod. 2016;122:287-307. DOI: 10.1016/j.jclepro.2016.02.022

Kakarla R, Min B. Photoautotrophic microalgae Scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation. Int J Hydrogen Energy. 2014;39(19):10275-83. DOI: 10.1016/j.ijhydene.2014.04.158

Huang L, Regan JM, Quan X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol. 2011;102(1):316-23. DOI: 10.1016/j.biortech.2010.06.096

Arun S, Sinharoy A, Pakshirajan K, Lens PNL. Algae based microbial fuel cells for wastewater treatment and recovery of value-added products. Renew Sustain Energy Rev. 2020;132(110041):110041. DOI: 10.1016/j.rser.2020.110041

Saratale RG, Kuppam C, Mudhoo A, Saratale GD, Periyasamy S, Zhen G, et al. Bioelectrochemical systems using microalgae – A concise research update. Chemosphere. 2017;177:35-43. DOI: 10.1016/j.chemosphere.2017.02.132

Enamala MK, Dixit R, Tangellapally A, Singh M, Dinakarrao SMP, Chavali M, et al. Photosynthetic microorganisms (Algae) mediated bioelectricity generation in microbial fuel cell: Concise review. Environ Technol Innov. 2020;19(100959):100959. DOI: 10.1016/j.eti.2020.100959

Bazdar E, Roshandel R, Yaghmaei S, Mardanpour MM. The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell. Bioresour Technol. 2018;261:350-60. DOI: 10.1016/j.biortech.2018.04.026

Yahampath Arachchige Don CDY, Babel S. Comparing the performance of microbial fuel cell with mechanical aeration and photosynthetic aeration in the cathode chamber. Int J Hydrogen Energy. 2021;46(31):16751-61. DOI: 10.1016/j.ijhydene.2020.09.068

Shchurska K, Kuzminskyi Y. Bioelectrochemical generation of hydrogen in a microbial fuel cell. 3. Experimental part. Vidnovluvana Energetika. 2012;(1):67-77.

Kokabian B, Ghimire U, Gude VG. Water deionization with renewable energy production in microalgae - microbial desalination process. Renewable Energy. 2018;122:354-61. DOI: 10.1016/j.renene.2018.01.061

Lawson K, Rossi R, Regan JM, Logan BE. Impact of cathodic electron acceptor on microbial fuel cell internal resistance. Biores Technol. 2020;316:123919. DOI: 10.1016/j.biortech.2020.123919

Liu Q, Yang Y, Mei X, Liu B, Chen C, Xing D. Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells. Science of The Total Environment. 2018;631-632:695-701. DOI: 10.1016/j.scitotenv.2018.03.008

Koltysheva D, Shchurska K, Kuzminskyi Y. Anode biofilm formation with applied external voltage. Innov Biosyst Bioeng. 2023;7(1):14-23. DOI: 10.20535/ibb.2023.7.1.273816

Borysova OV, Tsarenko PM, Konishchuk MO. Microalgae of culture collection of IBASU-A of M.G. Kholodny Institute of Botany NAS of Ukraine. Kyiv: M.G. Kholodny Institute of Botany NAS of Ukraine; 2014. 110 p.

Golub NB, Shinkarchuk MV, Kozlovets OA, Morgun BV, Lakhneko OR, Stepanenko AI, et al. Determination of biogas producers in antibiotic-containing sewage. Water Air Soil Pollut. 2020;231(8). DOI: 10.1007/s11270-020-04805-6

Flores-Rodriguez C, Min B. Enrichment of specific microbial communities by optimum applied voltages for enhanced methane production by microbial electrosynthesis in anaerobic digestion. Bioresour Technol. 2020;300:122624. DOI: 10.1016/j.biortech.2019.122624

Cai W, Liu W, Zhang Z, Feng K, Ren G, Pu C, et al. Electro-driven methanogenic microbial community diversity and variability in the electron abundant niche. Sci Total Environ. 2019;661:178-86. DOI: 10.1016/j.scitotenv.2019.01.131

Wati A, Rusva R, Umar L. Effect of LED wavelengths and light-dark cycle on photosynthetic production of Chlorella kessleri for algae-based biosensor optimization. J Phys. 2019;1351:012003. DOI: 10.1088/1742-6596/1351/1/012003

Baidya A, Akter T, Islam MR, Shah AK, Hossain MA, Salam MA, et al. Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea. Heliyon. 2021;7(12):e08525. DOI: 10.1016/j.heliyon.2021.e08525

Luimstra VM, Schuurmans JM, Verschoor AM, Hellingwerf KJ, Huisman J, Matthijs HC. Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynth Res. 2018;138(2):177-89. DOI: 10.1007/s11120-018-0561-5

Koc C, Kommareddy A, Anderson GA. Use of red and blue light-emitting diodes (LED) and fluorescent lamps to grow microalgae in a photobioreactor. Isr J Aquac Bamidgeh. 2013;65. DOI: 10.46989/001c.20661

González del Campo A, Cañizares P, Rodrigo MA, Fernández FJ, Lobato J. Microbial fuel cell with an algae-assisted cathode: A preliminary assessment. J Power Sources. 2013;242:638-45. DOI: 10.1016/j.jpowsour.2013.05.110

Search BioNumbers - the database of useful biological numbers [Internet]. Harvard.edu. [cited 2023 Aug 7]. Available from: https://bionumbers.hms.harvard.edu

Yadav G, Sharma I, Ghangrekar M, Sen R. A live bio-cathode to enhance power output steered by bacteria-microalgae synergistic metabolism in microbial fuel cell. J Power Sour. 2020; 449:227560. DOI: 10.1016/j.jpowsour.2019.227560

Koltysheva D, Shchurska K, Kuzminskyi Y. Microalgae and cyanobacteria as biological agents of biocathodes in biofuel cells. BioTechnologia. 2021;102(4):437-44. DOI: 10.5114/bta.2021.111108

Angioni S, Millia L, Mustarelli P, Doria E, Temporiti ME, Mannucci B, et al. Photosynthetic microbial fuel cell with polybenzimidazole membrane: synergy between bacteria and algae for wastewater removal and biorefinery. Heliyon. 2018;4(3):e00560. DOI: 10.1016/j.heliyon.2018.e00560

Sivakumar P, Ilango K, Praveena N, Sircar A, Balasubramanian R, Sakthisaravanan A, et al. Algal fuel cell. In: Jacob-Lopes E, Zepka LQ, Queiroz MI, editors. Microalgal biotechnology. IntechOpen; 2018. DOI: 10.5772/intechopen.74285

Wang DB, Song TS, Guo T, Zeng Q, Xie J. Electricity generation from sediment microbial fuel cells with algae-assisted cathodes. Int J Hydrogen Energy. 2014;39(25):13224-30. DOI: 10.1016/j.ijhydene.2014.06.141

Wang X, Feng Y, Liu J, Lee H, Li C, Li N, et al. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron. 2010;25(12):2639-43. DOI: 10.1016/j.bios.2010.04.036

Venkata Mohan S, Srikanth S, Chiranjeevi P, Arora S, Chandra R. Algal biocathode for in situ terminal electron acceptor (TEA) production: Synergetic association of bacteria–microalgae metabolism for the functioning of biofuel cell. Bioresour Technol. 2014;166:566-74. DOI: 10.1016/j.biortech.2014.05.081

Wu YC, Wang ZJ, Zheng Y, Xiao Y, Yang ZH, Zhao F. Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism. Appl Energy. 2014;116:86-90. DOI: 10.1016/j.apenergy.2013.11.066

Downloads

Published

2024-03-05

How to Cite

1.
Koltysheva D, Shchurska K, Kuzminskyi Y. Electrical Energy Generation by Microbial Fuel Cells With Microalgae on the Cathode. Innov Biosyst Bioeng [Internet]. 2024Mar.5 [cited 2024Dec.10];8(1):46-55. Available from: https://ibb.kpi.ua/article/view/290311

Issue

Section

Articles