In silico Analysis of Anti-cervical Cancer Drug Off-Target Effects on Diverse Protein Isoforms for Enhanced Therapeutic Strategies

Authors

  • Azhar Iqbal Faculty of Life Sciences, Department of Biotechnology, University of Okara, Pakistan https://orcid.org/0000-0001-7830-0685
  • Faisal Ali Faculty of Life Sciences, Department of Biotechnology, University of Okara, Pakistan
  • Shanza Choudhary Faculty of Life Sciences, Department of Biotechnology, University of Okara, Pakistan
  • Adiba Qayyum Faculty of Life Sciences, Department of Biotechnology, University of Okara, Pakistan
  • Fiza Arshad Faculty of Life Sciences, Department of Biotechnology, University of Okara, Pakistan
  • Sara Ashraf Faculty of Life Sciences, Department of Biotechnology, University of Okara, Pakistan
  • Moawaz Aziz Faculty of Life Sciences, Department of Biotechnology, University of Okara, Pakistan
  • Asad Ullah Shakil Faculty of Life Sciences, Department of Biotechnology, University of Okara, Pakistan
  • Momina Hussain Faculty of Life Sciences, Department of Biotechnology, University of Okara, Pakistan
  • Muhammad Sajid Faculty of Life Sciences, Department of Biotechnology, University of Okara, Pakistan
  • Sheikh Arslan Sehgal Department of Bioinformatics, Islamia University Bahawalpur, Pakistan

DOI:

https://doi.org/10.20535/ibb.2023.7.4.288017

Keywords:

cervical cancer, isoforms, molecular docking, interaction analysis, bioinformatics approaches

Abstract

Background. Cervical cancer is a serious medical condition that affects hundreds of thousands of individuals worldwide annually. The selection and analysis of suitable gene targets in the early stages of drug design are crucial for combating this disease. However, overlooking the presence of various protein isoforms may result in unwanted therapeutic or harmful side effects.

Objective. This study aimed to provide a computational analysis of the interactions between cervical cancer drugs and their targets, influenced by alternative splicing.

Methods. Using open-access databases, we targeted 45 FDA-approved cervical cancer drugs that target various genes having more than two distinct protein-coding isoforms. To check the conservation of binding pocket in isoforms of the genes, multiple sequence analysis was performed. To better understand the associations between proteins and FDA-approved drugs at the isoform level, we conducted molecular docking analysis.

Results. The study reveals that many drugs lack potential targets at the isoform level. Further examination of various isoforms of the same gene revealed distinct ligand-binding pocket configurations, including differences in size, shape, electrostatic characteristics, and structure.

Conclusions. This study highlights the potential risks of focusing solely on the canonical isoform, and ignoring the impact of cervical cancer drugs on- and off-target effects at the isoform level. These findings emphasize the importance of considering interactions between drugs and their targets at the isoform level to promote effective treatment outcomes.

References

Yang BH, Bray FI, Parkin DM, Sellors JW, Zhang ZF. Cervical cancer as a priority for prevention in different world regions: an evaluation using years of life lost. Int j Cancer. 2004;109(3):418-24. DOI: 10.1002/ijc.11719

Stuver S, Adami H-O. Cervical cancer. New York: Oxford University Press; 2002.

Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet. 2019;393(10167):169-82. DOI: 10.1016/S0140-6736(18)32470-X

Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet. 2013;382(9895):889-99. DOI: 10.1016/s0140-6736(13)60022-7

Small W, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, et al. Cervical cancer: a global health crisis. Cancer. 2017;123(13):2404-12. DOI: 10.1002/cncr.30667

Howlader N, Ries LA, Stinchcomb DG, Edwards BK. The impact of underreported Veterans Affairs data on national cancer statistics: analysis using population-based SEER registries. J Ntnl Cancer Inst. 2009;101(7):533-6. DOI: 10.1093/jnci/djn517

Moore DH. Cervical cancer. Obstet Gynecol. 2006;107(5):1152-61. DOI: 10.1097/01.AOG.0000215986.48590.79

Kim S, Choi H, Byun J. Overall 5‐year survival rate and prognostic factors in patients with stage IB and IIA cervical cancer treated by radical hysterectomy and pelvic lymph node dissection. Int J Gynecolog Cancer. 2000;10(4):305-12. DOI: 10.1046/j.1525-1438.2000.010004305.x

Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543(7645):378. DOI: 10.1038/nature21386

Oyervides-Muñoz MA, Pérez-Maya AA, Rodríguez-Gutiérrez HF, Gómez-Macias GS, Fajardo-Ramírez OR, Treviño V, et al. Understanding the HPV integration and its progression to cervical cancer. Infect Genet Evol. 2018;61:134-44. DOI: 10.1016/j.meegid.2018.03.003

Wilting SM, Steenbergen RD. Molecular events leading to HPV-induced high grade neoplasia. Papillomavirus Res. 2016;2:85-8. DOI: 10.1016/j.pvr.2016.04.003

Berger AC, Korkut A, Kanchi RS, Hegde AM, Lenoir W, Liu W, et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell. 2018;33(4):690-705.e9. DOI: 10.1016/j.ccell.2018.03.014

Liu S, Zheng B, Sheng Y, Kong Q, Jiang Y, Yang Y, et al. Identification of cancer dysfunctional subpathways by integrating DNA methylation, copy number variation, and gene-expression data. Front Genet. 2019;10:441. DOI: 10.3389/fgene.2019.00441

Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413-5. DOI: 10.1038/ng.259

Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470-6. DOI: 10.1038/nature07509

Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet. 2010;11(5):345-55. DOI: 10.1038/nrg2776.

Zhang J, Manley JL. Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 2013;3(11):1228-37. DOI: 10.1158/2159-8290.CD-13-0253

Lee SC-W, Abdel-Wahab O. Therapeutic targeting of splicing in cancer. Nat Med. 2016;22(9):976-86. DOI: 10.1038/nm.4165

Climente-González H, Porta-Pardo E, Godzik A, Eyras E. The functional impact of alternative splicing in cancer. Cell Rep. 2017;20(9):2215-26. DOI: 10.1016/j.celrep.2017.08.012

Pradella D, Naro C, Sette C, Ghigna C. EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer. 2017;16(8):1-19. DOI: 10.1186/s12943-016-0579-2

Safikhani Z, Smirnov P, Thu KL, Silvester J, El-Hachem N, Quevedo R, et al. Gene isoforms as expression-based biomarkers predictive of drug response in vitro. Nat Commun. 2017;8(1):1126. DOI: 10.1038/s41467-017-01153-8

Ma J, Wang J, Ghoraie LS, Men X, Chen R, Dai P. Comprehensive expression-based isoform biomarkers predictive of drug responses based on isoform co-expression networks and clinical data. Genomics. 2020;112(1):647-58. DOI: 10.1016/j.ygeno.2019.04.017

Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1):D941-7. DOI: 10.1093/nar/gky1015

Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Taylor KR, et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods. 2021;18(10):1196-203. DOI: 10.1038/s41592-021-01252-x

Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 2021;49(D1):D1144-51. DOI: 10.1093/nar/gkaa1084

Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074-82. DOI: 10.1093/nar/gkx1037

Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017;45(D1):D945-54. DOI: 10.1093/nar/gkw1074

Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49(D1):D344-54. DOI: 10.1093/nar/gkaa977

Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675-8. DOI: 10.1038/s41587-020-0546-8

Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, et al. The trRosetta server for fast and accurate protein structure prediction. Nat Protoc. 2021;16(12):5634-51. DOI: 10.1038/s41596-021-00628-9

Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32(suppl_2):W526-31. DOI: 10.1093/nar/gkh468

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-303. DOI: 10.1093/nar/gky427

Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9(40):1-8. DOI: 10.1186/1471-2105-9-40

Halgren TA. Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model. 2009 Feb;49(2):377-89. DOI: 10.1021/ci800324m

Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, et al. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer. 2022;21(1):87. DOI: 10.1186/s12943-022-01548-2

Ross SJ, Revenko AS, Hanson LL, Ellston R, Staniszewska A, Whalley N, et al. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci Transl Med. 2017 Jun 14;9(394):eaal5253. DOI: 10.1126/scitranslmed.aal5253

De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA. 2010;304(16):1812-20. DOI: 10.1001/jama.2010.1535

Maitra R, Seetharam R, Tesfa L, Augustine TA, Klampfer L, Coffey MC, et al. Oncolytic reovirus preferentially induces apoptosis in KRAS mutant colorectal cancer cells, and synergizes with irinotecan. Oncotarget. 2014;5(9):2807-19. DOI: 10.18632/oncotarget.1921

Kloth JN, Kenter GG, Spijker HS, Uljee S, Corver WE, Jordanova ES, et al. Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival. Modern Pathol. 2008;21(7):866-75. DOI: 10.1038/modpathol.2008.62

Singhi AD, Ali SM, Lacy J, Hendifar A, Nguyen K, Koo J, et al. Identification of targetable ALK rearrangements in pancreatic ductal adenocarcinoma. J Natl Compr Canc Netw. 2017 May;15(5):555-62. DOI: 10.6004/jnccn.2017.0058

Ganesh K, Shah RH, Vakiani E, Nash GM, Skottowe HP, Yaeger R, et al. Clinical and genetic determinants of ovarian metastases from colorectal cancer. Cancer. 2017;123(7):1134-43. DOI: 10.1002/cncr.30424

Hassan B, Akcakanat A, Sangai T, Evans KW, Adkins F, Eterovic AK, et al. Catalytic mTOR inhibitors can overcome intrinsic and acquired resistance to allosteric mTOR inhibitors. Oncotarget. 2014;5(18):8544-57. DOI: 10.18632/oncotarget.2337

Voutsadakis IA. PI3KCA mutations in uterine cervix carcinoma. J Clin Med. 2021 Jan 10;10(2):220. DOI: 10.3390/jcm10020220

Juric D, de Bono JS, LoRusso PM, Nemunaitis J, Heath EI, Kwak EL, et al. A first-in-human, Phase I, dose-escalation study of TAK-117, a selective PI3Kα isoform inhibitor, in patients with advanced solid malignancies. Clin Cancer Res. 2017 Sep 1;23(17):5015-23. DOI: 10.1158/1078-0432.CCR-16-2888

Kiavue N, Cabel L, Melaabi S, Bataillon G, Callens C, Lerebours F, et al. ERBB3 mutations in cancer: biological aspects, prevalence and therapeutics. Oncogene. 2020;39(3):487-502. DOI: 10.1038/s41388-019-1001-5

Jaiswal BS, Kljavin NM, Stawiski EW, Chan E, Parikh C, Durinck S, et al. Oncogenic ERBB3 mutations in human cancers. Cancer Cell. 2013;23(5):603-17. DOI: 10.1016/j.ccr.2013.04.012

Wada K, Lee JY, Hung HY, Shi Q, Lin L, Zhao Y, et al. Novel curcumin analogs to overcome EGFR-TKI lung adeno-carcinoma drug resistance and reduce EGFR-TKI-induced GI adverse effects. Bioorg Med Chem. 2015 Apr 1;23(7):1507-14. DOI: 10.1016/j.bmc.2015.02.003

He L, Torres-Lockhart K, Forster N, Ramakrishnan S, Greninger P, Garnett MJ, et al. Mcl-1 and FBW7 control a dominant survival pathway underlying HDAC and Bcl-2 inhibitor synergy in squamous cell carcinoma. Cancer Discov. 2013;3(3):324-37. DOI: 10.1158/2159-8290.CD-12-0417

Villaruz LC, Socinski MA. Temsirolimus therapy in a patient with lung adenocarcinoma harboring an FBXW7 mutation. Lung Cancer. 2014 Feb;83(2):300-1. DOI: 10.1016/j.lungcan.2013.11.018

Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36(6):320-8. DOI: 10.1016/j.tibs.2011.03.006

Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, Shokat KM, et al. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science. 2010;327(5973):1638-42. DOI: 10.1126/science.1184429

Goldman M, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. biorxiv. 2019 Mar 5:326470. DOI: 10.1101/326470

Zhou L, Li Z, Yang J, Tian G, Liu F, Wen H, et al. Revealing drug-target interactions with computational models and algorithms. Molecules. 2019;24(9):1714. DOI: 10.3390/molecules24091714

Davuluri RV, Suzuki Y, Sugano S, Plass C, Huang THM. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet. 2008 Apr;24(4):167-77. DOI: 10.1016/j.tig.2008.01.008

Kalsotra A, Cooper TA. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genetics. 2011;12(10):715-29. DOI: 10.1038/nrg3052

Rouillard AD, Hurle MR, Agarwal P. Systematic interrogation of diverse Omic data reveals interpretable, robust, and generalizable transcriptomic features of clinically successful therapeutic targets. PLoS Comput Biol. 2018;14(5):e1006142. DOI: 10.1371/journal.pcbi.1006142

Downloads

Published

2023-12-05

How to Cite

1.
Iqbal A, Ali F, Choudhary S, Qayyum A, Arshad F, Ashraf S, Aziz M, Ullah Shakil A, Hussain M, Sajid M, Arslan Sehgal S. In silico Analysis of Anti-cervical Cancer Drug Off-Target Effects on Diverse Protein Isoforms for Enhanced Therapeutic Strategies. Innov Biosyst Bioeng [Internet]. 2023Dec.5 [cited 2024Nov.18];7(4):36-47. Available from: https://ibb.kpi.ua/article/view/288017

Issue

Section

Articles