In silico Analysis of Anti-cervical Cancer Drug Off-Target Effects on Diverse Protein Isoforms for Enhanced Therapeutic Strategies
DOI:
https://doi.org/10.20535/ibb.2023.7.4.288017Keywords:
cervical cancer, isoforms, molecular docking, interaction analysis, bioinformatics approachesAbstract
Background. Cervical cancer is a serious medical condition that affects hundreds of thousands of individuals worldwide annually. The selection and analysis of suitable gene targets in the early stages of drug design are crucial for combating this disease. However, overlooking the presence of various protein isoforms may result in unwanted therapeutic or harmful side effects.
Objective. This study aimed to provide a computational analysis of the interactions between cervical cancer drugs and their targets, influenced by alternative splicing.
Methods. Using open-access databases, we targeted 45 FDA-approved cervical cancer drugs that target various genes having more than two distinct protein-coding isoforms. To check the conservation of binding pocket in isoforms of the genes, multiple sequence analysis was performed. To better understand the associations between proteins and FDA-approved drugs at the isoform level, we conducted molecular docking analysis.
Results. The study reveals that many drugs lack potential targets at the isoform level. Further examination of various isoforms of the same gene revealed distinct ligand-binding pocket configurations, including differences in size, shape, electrostatic characteristics, and structure.
Conclusions. This study highlights the potential risks of focusing solely on the canonical isoform, and ignoring the impact of cervical cancer drugs on- and off-target effects at the isoform level. These findings emphasize the importance of considering interactions between drugs and their targets at the isoform level to promote effective treatment outcomes.
References
Yang BH, Bray FI, Parkin DM, Sellors JW, Zhang ZF. Cervical cancer as a priority for prevention in different world regions: an evaluation using years of life lost. Int j Cancer. 2004;109(3):418-24. DOI: 10.1002/ijc.11719
Stuver S, Adami H-O. Cervical cancer. New York: Oxford University Press; 2002.
Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet. 2019;393(10167):169-82. DOI: 10.1016/S0140-6736(18)32470-X
Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet. 2013;382(9895):889-99. DOI: 10.1016/s0140-6736(13)60022-7
Small W, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, et al. Cervical cancer: a global health crisis. Cancer. 2017;123(13):2404-12. DOI: 10.1002/cncr.30667
Howlader N, Ries LA, Stinchcomb DG, Edwards BK. The impact of underreported Veterans Affairs data on national cancer statistics: analysis using population-based SEER registries. J Ntnl Cancer Inst. 2009;101(7):533-6. DOI: 10.1093/jnci/djn517
Moore DH. Cervical cancer. Obstet Gynecol. 2006;107(5):1152-61. DOI: 10.1097/01.AOG.0000215986.48590.79
Kim S, Choi H, Byun J. Overall 5‐year survival rate and prognostic factors in patients with stage IB and IIA cervical cancer treated by radical hysterectomy and pelvic lymph node dissection. Int J Gynecolog Cancer. 2000;10(4):305-12. DOI: 10.1046/j.1525-1438.2000.010004305.x
Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543(7645):378. DOI: 10.1038/nature21386
Oyervides-Muñoz MA, Pérez-Maya AA, Rodríguez-Gutiérrez HF, Gómez-Macias GS, Fajardo-Ramírez OR, Treviño V, et al. Understanding the HPV integration and its progression to cervical cancer. Infect Genet Evol. 2018;61:134-44. DOI: 10.1016/j.meegid.2018.03.003
Wilting SM, Steenbergen RD. Molecular events leading to HPV-induced high grade neoplasia. Papillomavirus Res. 2016;2:85-8. DOI: 10.1016/j.pvr.2016.04.003
Berger AC, Korkut A, Kanchi RS, Hegde AM, Lenoir W, Liu W, et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell. 2018;33(4):690-705.e9. DOI: 10.1016/j.ccell.2018.03.014
Liu S, Zheng B, Sheng Y, Kong Q, Jiang Y, Yang Y, et al. Identification of cancer dysfunctional subpathways by integrating DNA methylation, copy number variation, and gene-expression data. Front Genet. 2019;10:441. DOI: 10.3389/fgene.2019.00441
Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413-5. DOI: 10.1038/ng.259
Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470-6. DOI: 10.1038/nature07509
Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet. 2010;11(5):345-55. DOI: 10.1038/nrg2776.
Zhang J, Manley JL. Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 2013;3(11):1228-37. DOI: 10.1158/2159-8290.CD-13-0253
Lee SC-W, Abdel-Wahab O. Therapeutic targeting of splicing in cancer. Nat Med. 2016;22(9):976-86. DOI: 10.1038/nm.4165
Climente-González H, Porta-Pardo E, Godzik A, Eyras E. The functional impact of alternative splicing in cancer. Cell Rep. 2017;20(9):2215-26. DOI: 10.1016/j.celrep.2017.08.012
Pradella D, Naro C, Sette C, Ghigna C. EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression. Mol Cancer. 2017;16(8):1-19. DOI: 10.1186/s12943-016-0579-2
Safikhani Z, Smirnov P, Thu KL, Silvester J, El-Hachem N, Quevedo R, et al. Gene isoforms as expression-based biomarkers predictive of drug response in vitro. Nat Commun. 2017;8(1):1126. DOI: 10.1038/s41467-017-01153-8
Ma J, Wang J, Ghoraie LS, Men X, Chen R, Dai P. Comprehensive expression-based isoform biomarkers predictive of drug responses based on isoform co-expression networks and clinical data. Genomics. 2020;112(1):647-58. DOI: 10.1016/j.ygeno.2019.04.017
Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47(D1):D941-7. DOI: 10.1093/nar/gky1015
Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Taylor KR, et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods. 2021;18(10):1196-203. DOI: 10.1038/s41592-021-01252-x
Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 2021;49(D1):D1144-51. DOI: 10.1093/nar/gkaa1084
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074-82. DOI: 10.1093/nar/gkx1037
Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017;45(D1):D945-54. DOI: 10.1093/nar/gkw1074
Blum M, Chang H-Y, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49(D1):D344-54. DOI: 10.1093/nar/gkaa977
Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675-8. DOI: 10.1038/s41587-020-0546-8
Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, et al. The trRosetta server for fast and accurate protein structure prediction. Nat Protoc. 2021;16(12):5634-51. DOI: 10.1038/s41596-021-00628-9
Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32(suppl_2):W526-31. DOI: 10.1093/nar/gkh468
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-303. DOI: 10.1093/nar/gky427
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9(40):1-8. DOI: 10.1186/1471-2105-9-40
Halgren TA. Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model. 2009 Feb;49(2):377-89. DOI: 10.1021/ci800324m
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, et al. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer. 2022;21(1):87. DOI: 10.1186/s12943-022-01548-2
Ross SJ, Revenko AS, Hanson LL, Ellston R, Staniszewska A, Whalley N, et al. Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci Transl Med. 2017 Jun 14;9(394):eaal5253. DOI: 10.1126/scitranslmed.aal5253
De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA. 2010;304(16):1812-20. DOI: 10.1001/jama.2010.1535
Maitra R, Seetharam R, Tesfa L, Augustine TA, Klampfer L, Coffey MC, et al. Oncolytic reovirus preferentially induces apoptosis in KRAS mutant colorectal cancer cells, and synergizes with irinotecan. Oncotarget. 2014;5(9):2807-19. DOI: 10.18632/oncotarget.1921
Kloth JN, Kenter GG, Spijker HS, Uljee S, Corver WE, Jordanova ES, et al. Expression of Smad2 and Smad4 in cervical cancer: absent nuclear Smad4 expression correlates with poor survival. Modern Pathol. 2008;21(7):866-75. DOI: 10.1038/modpathol.2008.62
Singhi AD, Ali SM, Lacy J, Hendifar A, Nguyen K, Koo J, et al. Identification of targetable ALK rearrangements in pancreatic ductal adenocarcinoma. J Natl Compr Canc Netw. 2017 May;15(5):555-62. DOI: 10.6004/jnccn.2017.0058
Ganesh K, Shah RH, Vakiani E, Nash GM, Skottowe HP, Yaeger R, et al. Clinical and genetic determinants of ovarian metastases from colorectal cancer. Cancer. 2017;123(7):1134-43. DOI: 10.1002/cncr.30424
Hassan B, Akcakanat A, Sangai T, Evans KW, Adkins F, Eterovic AK, et al. Catalytic mTOR inhibitors can overcome intrinsic and acquired resistance to allosteric mTOR inhibitors. Oncotarget. 2014;5(18):8544-57. DOI: 10.18632/oncotarget.2337
Voutsadakis IA. PI3KCA mutations in uterine cervix carcinoma. J Clin Med. 2021 Jan 10;10(2):220. DOI: 10.3390/jcm10020220
Juric D, de Bono JS, LoRusso PM, Nemunaitis J, Heath EI, Kwak EL, et al. A first-in-human, Phase I, dose-escalation study of TAK-117, a selective PI3Kα isoform inhibitor, in patients with advanced solid malignancies. Clin Cancer Res. 2017 Sep 1;23(17):5015-23. DOI: 10.1158/1078-0432.CCR-16-2888
Kiavue N, Cabel L, Melaabi S, Bataillon G, Callens C, Lerebours F, et al. ERBB3 mutations in cancer: biological aspects, prevalence and therapeutics. Oncogene. 2020;39(3):487-502. DOI: 10.1038/s41388-019-1001-5
Jaiswal BS, Kljavin NM, Stawiski EW, Chan E, Parikh C, Durinck S, et al. Oncogenic ERBB3 mutations in human cancers. Cancer Cell. 2013;23(5):603-17. DOI: 10.1016/j.ccr.2013.04.012
Wada K, Lee JY, Hung HY, Shi Q, Lin L, Zhao Y, et al. Novel curcumin analogs to overcome EGFR-TKI lung adeno-carcinoma drug resistance and reduce EGFR-TKI-induced GI adverse effects. Bioorg Med Chem. 2015 Apr 1;23(7):1507-14. DOI: 10.1016/j.bmc.2015.02.003
He L, Torres-Lockhart K, Forster N, Ramakrishnan S, Greninger P, Garnett MJ, et al. Mcl-1 and FBW7 control a dominant survival pathway underlying HDAC and Bcl-2 inhibitor synergy in squamous cell carcinoma. Cancer Discov. 2013;3(3):324-37. DOI: 10.1158/2159-8290.CD-12-0417
Villaruz LC, Socinski MA. Temsirolimus therapy in a patient with lung adenocarcinoma harboring an FBXW7 mutation. Lung Cancer. 2014 Feb;83(2):300-1. DOI: 10.1016/j.lungcan.2013.11.018
Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36(6):320-8. DOI: 10.1016/j.tibs.2011.03.006
Miller S, Tavshanjian B, Oleksy A, Perisic O, Houseman BT, Shokat KM, et al. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science. 2010;327(5973):1638-42. DOI: 10.1126/science.1184429
Goldman M, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. biorxiv. 2019 Mar 5:326470. DOI: 10.1101/326470
Zhou L, Li Z, Yang J, Tian G, Liu F, Wen H, et al. Revealing drug-target interactions with computational models and algorithms. Molecules. 2019;24(9):1714. DOI: 10.3390/molecules24091714
Davuluri RV, Suzuki Y, Sugano S, Plass C, Huang THM. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet. 2008 Apr;24(4):167-77. DOI: 10.1016/j.tig.2008.01.008
Kalsotra A, Cooper TA. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genetics. 2011;12(10):715-29. DOI: 10.1038/nrg3052
Rouillard AD, Hurle MR, Agarwal P. Systematic interrogation of diverse Omic data reveals interpretable, robust, and generalizable transcriptomic features of clinically successful therapeutic targets. PLoS Comput Biol. 2018;14(5):e1006142. DOI: 10.1371/journal.pcbi.1006142
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The ownership of copyright remains with the Authors.
Authors may use their own material in other publications provided that the Journal is acknowledged as the original place of publication and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” as the Publisher.
Authors are reminded that it is their responsibility to comply with copyright laws. It is essential to ensure that no part of the text or illustrations have appeared or are due to appear in other publications, without prior permission from the copyright holder.
IBB articles are published under Creative Commons licence:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.