Photosynthetic Pigments Content in Emmer Wheat Plants as Criteria of Productivity in Traditional and Organic Farming Technology
DOI:
https://doi.org/10.20535/ibb.2022.6.1.255277Keywords:
photosynthetic pigments, organic farming, pre-sowing seed treatment, crop rotation, UV-C irradiation, Triticum dicoccum wheatAbstract
Background. Estimation of chlorophyll and carotenoid content is an informative way to obtain ideas about the plants photosynthetic process and is an indirect method for assessing the productivity of plant crops, including cereals. As the worldwide interest at now for traditional and natural foods is growing, in the work we used one of the oldest grain crops – emmer wheat (Triticum dicoccum (Schrank.) Schuebl.) which was cultivated in traditional and organic farming system.
Objective. The study aim was to determine the role of chlorophyll and carotenoids in the emmer wheat productivity formation by traditional and organic farming technology under different pre-sowing seed treatment systems.
Methods. Field experiment was establishment during 2019–2021 on low-humus, hard-loam chernozems, the condition of which meets the “virgin land” criterion. The emmer wheat cultivation in organic technology was carried out in crop rotation: winter rye (green manure crop) – mustard (to improve the field phytosanitary condition and soil organic matter indicators) – emmer wheat. Two variants of pre-sowing seed treatment were studied: irradiation with ultraviolet light of the C range (100–280 nm) and seed treatment with 1r Seed Treatment humic preparation. The pre-sowing seed treatment in the traditional technology of the emmer wheat cultivation was carried out by the UV-C irradiation. In organic technology both UV-C irradiation and treatment with 1r Seed Treatment humic preparation of natural origin were used. Statistical data processing was performed by methods of descriptive statistics, regression and analysis of variance by the program Statistica 10.0. The experimental data significance was evaluated by using multifactor analysis of variance (ANOVA) to calculate the least significant difference (LSD05).
Results. It was found the use of UV-C seeds irradiation in organic and traditional cultivation technologies leads to increase in the chlorophyll a (Chl a) content by 9.2 % and chlorophyll b (Chl b) content by 14.5 % in plants grown by organic technology, however to decrease in carotenoid content (Ct) by 14.9 %. The increase in the photosynthetic pigments content by UV-C seeds irradiation lead to yield increase from 4.26 t/ha by the traditional technology to 5.17 t/ha by the organic technology, ie by 21.4 %. In organic technology based on the comparison of the photosynthetic apparatus main indicators of the emmer wheat and yield, the most effective method for seed treatment was determined. It was established that at result of 1r Seed Treatment humic preparation application in pre-sowing seed treatment, the Chl a concentration decreased by 2.4 %, the Chl b and Ct concentration increased by 5 and 25.5 %, respectively, compared with plants grown from UV-C irradiated seeds. When 1r Seed Treatment was used for pre-sowing treatment yield was 5.58 t/ha, while at UV-C seed treatment – 5.17 t/ha, ie, the yield increase was 8 %. An inverse correlation between the ratio of the photosynthetic pigments Chl a/Chl b content and the emmer wheat yield was determined.
Conclusions. According to the study results, it can be assumed that the introduction of organic farming technology with pre-sowing seed treatment by the 1r Seed Treatment humic preparation can increase the emmer wheat yield by 31% compared to the traditional technology. Thus, the photosynthetic pigments content and their ratio can be the effectiveness indicators of the implemented agricultural technologies.
References
Arzani A, Muhamad A. Compr Rev Food Sci Food Saf. 2017 May;16(3):477-88. DOI: 10.1111/1541-4337.12262
Čurná V, Lacko-Bartošova M. Chemical composition and nutritional value of emmer wheat (Triticum diccoccon Schrank): A review. J Central Europ Agricult. 2017;18(1):117-34. DOI: 10.5513/JCEA01/18.1.1871
Lachman J, Miholova D, Pivec V, Jiri K, Janovska D. Content of phenolic antioxidants and selenium in grain of einkorn (Triticum monococcum), emmer (Triticum diccoccum) and spring wheat (Triticum aestivum) varieties. Plant Soil Environ. 2011;57(5):235-43. DOI: 10.17221/13/2011-PSE
Suchowilska E, Wiwart M, Kandler W, Krska R. A comparison of macro- and microelement concentrations in the whole grain of four Triticum species. Plant Soil Environ. 2012;58(3):141-7. DOI: 10.17221/688/2011-PSE
Peng J, Sun D, Nevo E. Wild emmer wheat, Triticum dicoccoides occupies a pivotal position in wheat domestication process. Aust J Crop Sci. 2011;5(9):1127-43.
Chayka TO. Preconditions for development of the market of organic products in Ukraine. Market Manag Innov. 2011;4(1):233-40.
Khalep Y, Moskalenko A. Ecological and economic aspects of the efficiency of Polissia organic plant models. Agric Resour Econ. 2020;6(4):5-19. DOI: 10.51599/ARE.2020.06.04.01
Horobets M, Chaika T, Korotkova I, Pysarenko P, Mishchenko O, Shevnikov M, et al. In-fluence of growth stimulants on photosynthetic activity of spring barley (Hordeum vul-gare L.) crops. Int J Botany Stud. 2021;6(2):340-5.
Crowder DW, Reganold JP. Financial competitiveness of organic agriculture on a global scale. Proc Natl Acad Sci. 2015;112(24):7611-6. DOI: 10.1073/pnas.1423674112
Chaika Т, Korotkova I, Barabolia О, Shokalo N, Chetveryk О, Bilenko О, et al. Technolo-gical peculiarities of growing mustard and two-grained spelt (Triticum Dicoccum (Schrank) Schuebl) by organic farming methods. Int J Botany Stud. 2021;6(6):205-10.
Semenov A, Korotkova I, Sakhno T, Marenych M, Нanhur V, Liashenko V, et al. Effect of UV-C radiation on basic indices of growth process of winter wheat (Triticum aestivum L.) seeds in pre-sowing treatment. Acta Agricult Slovenica. 2020;116(1):49-58. DOI: 10.14720/AAS.2020.116.1.1563
Korotkova I, Marenych M, Hanhur V, Laslo O, Chetveryk O, Liashenko V. Weed control and winter wheat crop yield with the application of herbicides, nitrogen fertilizers, and their mixtures with humic growth regulators. Acta Agrobot. 2021;74. DOI: 10.5586/AA.748
Wellburn AR. The spectral determination of chlorophylls a, and b, as well as total ca-rotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 1994;144(3):307-13. DOI: 10.1016/S0176-1617(11)81192-2
Korotkova IV, Gorobets MV, Chaika TO. Influence of growth stimulants on productivity of spring barley varieties. Bulletin of Poltava State Agrarian Academy. 2021;2:20-30. DOI: 10.31210/visnyk2021.02.02
Korotkova IV, Chaika TO. Influence of mineral fertilizers, humic preparations and their mixtures on the intensity of growth processes and the content of photosynthetic pig-ments in winter wheat plants. In: Chaika TO, editor. Eco-oriented approaches to the restoration of man-made contaminated areas and the creation of sustainable ecosystems. Poltava: Astraia, 2022. p. 279-322.
Marenych MM, Markina IA, Hanhur VV, Len OI. Effectiveness of "Soilbiotics" application on winter wheat. Bulletin of Poltava State Agrarian Academy. 2018;3:22-6. DOI: 10.31210/visnyk2018.03.03
Cai R-G, Zhang M, Yin YP, Wang P, Zhang TB, Gu F, et al. Photosynthetic characteristics and antioxidative metabolism of flag leaves in responses to nitrogen application during grain filling of field-grown wheat. Agric Sci China. 2008;7(2):157-67. DOI: 10.1016/s1671-2927(08)60035-8
Melis A. Solar energy convertion efficiencies in photosynthesis: Minimizing the chloro-phyll antennae to maximize efficience. Plant Sci. 2009;177(4):272-80. DOI: 10.1016/j.plantsci.2009.06.005
Murchie EH, Pinto M, Horton P. Agriculture and the new challenges for photosynthesis research. New Phytol. 2009;181(3):532-52. DOI: 10.1111/j.1469-8137.2008.02705.x
Li N, Jia J, Xia C, Liu X, Kong X. Characterization and mapping of novel chlorophyll deficient mutant genes in durum wheat. Breed Sci. 2013; 63(2):169-75. DOI: 10.1270/jsbbs.63.169
Luo PG, Ren ZL. Wheat leaf chlorosis controlled by a single recessive gene. J Plant Physiol and Mol Biol. 2006;32:330-8.
Sui N, Li M, Meng QW, Tian JC, Zhao SJ. Photosynthetic characteristics of a super high yield cultivar of winter wheat during late grown period. Agricult Sci in China. 2010;9(3):346-54. DOI: 10.1016/s1671-2927(09)60103-6
Campos MD, Nogales A, Cardoso HG, Campos C, Grzebelus D, Velada I, et al. Carrot plas-tid terminal oxidase gene (DcPTOX) responds early to chilling and harbors intronic pre-mirnas related to plant disease defense. Plant Gene. 2016;7:21-5. DOI: 10.1016/j.plgene.2016.07.002
Li Y, He N, Hou J, Xu L, Liu C, Zhang J, et al. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front Ecol Evol. 2018;6:64. DOI: 10.3389/fevo.2018.00064
Croft H, Chen JM, Luo X, Bartlett P, Chen B, Staebler RM. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob Change Biol. 2017;23(9):3513-24. DOI: 10.1111/gcb.13599
Lawlor DW. Musings about the effects of envіronment on photosynthesis. Ann Bot. 2009;103(4):543-9. DOI: 10.1093/aob/mcn256
Yanyan Y, Peng H, Fengying D, Li N, Tingbo D, Keru W, et al. Improving photosynthesis to increase grain yield potential: an ana¬lysis of maize hybrids released in diferent years in China. Photosynth Res. 2021;150(1-3):295-311. DOI: 10.1007/s11120-021-00847-x
Ivanov LA, Ivanova LA, Ronzhina DA, Yudina PK. Changes in the chlorophyll and carotenoid contents in the leaves of steppe plants along a latitudinal gradient in South Ural. Russ J Plant Physiol. 2013;60(6):812-20. DOI: 10.1134/s1021443713050075
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The ownership of copyright remains with the Authors.
Authors may use their own material in other publications provided that the Journal is acknowledged as the original place of publication and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” as the Publisher.
Authors are reminded that it is their responsibility to comply with copyright laws. It is essential to ensure that no part of the text or illustrations have appeared or are due to appear in other publications, without prior permission from the copyright holder.
IBB articles are published under Creative Commons licence:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.