Development of a New Method for Obtaining the Bioplastics Based on Microbial Biopolymers and Lignin
DOI:
https://doi.org/10.20535/ibb.2022.6.1.253658Keywords:
lignin, cyanobacteria, polylactic acid, polyhydroxyalkanoates, bioplastic, industrial waste, renewable materialsAbstract
Background. The ever-increasing demand for plastic polymer products with simultaneous depleting fossil fuels such as oil and natural gas, as well as the growing problem of waste disposal, creates a need to find alternative technologies that meet current trends in both environmental and economic development. Bioplastic materials that are synthesized from renewable sources and have the ability to biodegrade are considered as such an alternative. The main obstacle of modern bioplastics which makes it impossible to completely replace traditional plastics is the high cost of production. In order to reduce the cost of existing biopolymers, production waste is added to the polymer matrix. One such waste is lignin – the second most common biopolymer. An additional way to reduce the cost of production is to find more cost-effective producers. Thus, although the classical microbial synthesis has fairly high productivity, the source of carbon for the cultivation of microorganisms are sugars obtained from agricultural raw materials which could cause a threat for food industry. The new producer for production of polyhydroxyalkanoates (PHA) is cyanobacteria, the carbon source of which is carbon (IV) oxide or gas emissions from enterprises, which reduces the cost of the target product.
Objective. Development of a method for obtaining bioplastics using products of microbial synthesis and lignin.
Methods. Cyanobacteria Nostoc commune was grown using a nutrient medium BG-11 with subsequent limitation of Nitrogen for the synthesis of PHA. Hydrolyzed lignin from hardwoods was combined with polylactic acid (PLA) or cyanobacteria-synthesized PHA in different ratios with further casting of the solution to determine the ability of lignin and polymer matrix to form polymer films.
Results. The content of PHA in the cells of cyanobacteria Nostoc commune, when grown in a nutrient medium limited to Nitrogen, reached 7.8%. The synthesized polymer films based on PLA and lignin were not homogeneous, and films based on PHA and lignin were fragile.
Conclusions. The possibility of obtaining PHA by using cyanobacteria of the Nostoc commune species under environmental conditions that differ from the optimal ones for both cultivation and PHA production is shown. The possibility of obtaining a biopolymer based on lignin and PLA is shown. To form homogeneous films, it is necessary to change the standard conditions for obtaining a mixture of components. The interaction of lignin with PHA forms a homogeneous polymer mixture, which is fragile and requires the addition of plasticizers to obtain the necessary properties.
References
Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. DOI: 10.1126/sciadv.1700782
Bioplastics & Biopolymers Market Global Forecast to 2026 | MarketsandMarkets [Internet]. Marketsandmarkets.com. 2022 [cited 2021 Dec 31]. Available from: https://www.marketsandmarkets.com/Market-Reports/biopolymers-bioplastics-market-88795240.html
What is PLA? (Everything You Need To Know) [Internet]. Twi-global.com. 2022 [cited 2021 Dec 31]. Available from: https://www.twi-global.com/technical-knowledge/faqs/what-is-pla
Lopes MS, Jardini AL, Filho RM. Synthesis and characterizations of poly (lactic acid) by ring-opening polymerization for biomedical applications. Chem Eng Trans. 2014;38:331-6. DOI: 10.3303/CET1438056
Chen GQ. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev. 2009;38(8):2434-46. DOI: 10.1039/b812677c
Kaewbai-ngam A, Incharoensakdi A, Monshupanee T. Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: An efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrix scytonemicola TISTR 8095. Bioresour Technol. 2016;212:342-7. DOI: 10.1016/j.biortech.2016.04.035
Monshupanee T, Nimdach P, Incharoensakdi A. Two-stage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium. Sci Rep. 2016 Nov 15;6(1):37121. DOI: 10.1038/srep37121
Kamravamanesh D, Pflügl S, Nischkauer W, Limbeck A, Lackner M, Herwig C. Photosynthetic poly-β-hydroxybutyrate accumulation in unicellular cyanobacterium Synechocystis sp. PCC 6714. AMB Express. 2017 Dec;7(1):143. DOI: 10.1186/s13568-017-0443-9
Price S, Kuzhiumparambil U, Pernice M, Ralph PJ. Cyanobacterial polyhydroxybutyrate for sustainable bioplastic produc-tion: Critical review and perspectives. J Environ Chem Eng. 2020;8(4):104007. DOI: 10.1016/j.jece.2020.104007
Ansari S, Fatma T. Cyanobacterial polyhydroxybutyrate (PHB): Screening, optimization and characterization. PLoS One. 2016 Jun 30;11(6):e0158168. doi: 10.1371/journal.pone.0158168
Singh MK, Rai PK, Rai A, Singh S. Poly-β-Hydroxybutyrate production by the cyanobacterium Scytonema geitleri Bharadwaja under varying environmental conditions. Biomolecules. 2019 May 21;9(5):198. DOI: 10.3390/biom9050198
Panda B, Jain P, Sharma L, Mallick N. Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresour Technol. 2006 Jul;97(11):1296-301. DOI: 10.1016/j.biortech.2005.05.013
Jau MH, Yew SP, Toh PSY, Chong ASC, Chu WL, Phang SM, et al. Biosynthesis and mobilization of poly(3-hydroxy-butyrate) [P(3HB)] by Spirulina platensis. Int J Biol Macromol. 2005 Aug;36(3):144-51. DOI: 10.1016/j.ijbiomac.2005.05.002
Accelerators Lignin, Grade Standard: Industrial Grade, Rs 40 /kilogram [Internet]. indiamart.com. 2022 [cited 2021 Dec 31]. Available from: https://www.indiamart.com/proddetail/lignin-21090426788.html
Glasser WG. About making lignin great again–some lessons from the past. Front Chem. 2019 Aug 29;7:565. DOI: 10.3389/fchem.2019.00565
Lignin Market Size Growth | Global Industry Analysis Report, 2018-2025 [Internet]. Grandviewresearch.com. 2022 [cited 2021 Dec 31]. Available from: https://www.grandviewresearch.com/industry-analysis/lignin-market
Li C, Zhao X, Wang A, Huber GW, Zhang T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev. 2015 Nov 11;115(21):11559-624. DOI: 10.1021/acs.chemrev.5b00155
Behle A. Recipe for standard BG-11 media [Internet]. Protocols.io. 2022 [cited 2021 Dec 31]. Available from: https://www.protocols.io/view/recipe-for-standard-bg-11-media-7kmhku6
Yellore V, Desai A. Production of poly-3-hydroxybutyrate from lactose and whey by Methylobacterium sp. ZP24. Lett Appl Microbiol. 1998 Jun;26(6):391-4. DOI: 10.1046/j.1472-765x.1998.00362.x
Moghanjoghi SM, Ganjibakhsh M, Gohari NS, Izadpanah M, Rahmati H, Gorji ZE, et al. Establishment and characteriza-tion of rough-tailed gecko original tail cells. Cytotechnology. 2018;70(5):1337-47. DOI: 10.1007/s10616-018-0223-7
Mousavioun P, Halley PJ, Doherty WOS. Thermophysical properties and rheology of PHB/lignin blends. Ind Crops Prod. 2013;50:270-5. DOI: 10.1016/j.indcrop.2013.07.026
Anwer MAS, Naguib HE, Celzard A, Fierro V. Comparison of the thermal, dynamic mechanical and morphological properties of PLA-Lignin & PLA-Tannin particulate green composites. Compos Part B Eng. 2015;82:92-9. DOI: 10.1016/j.compositesb.2015.08.028
Wang S, Li Y, Xiang H, Zhou Z, Chang T, Zhu M. Low cost carbon fibers from bio-renewable Lignin/Poly(lactic acid) (PLA) blends. Compos Sci Technol. 2015;119:20-5. DOI: 10.1016/j.compscitech.2015.09.021
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The ownership of copyright remains with the Authors.
Authors may use their own material in other publications provided that the Journal is acknowledged as the original place of publication and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” as the Publisher.
Authors are reminded that it is their responsibility to comply with copyright laws. It is essential to ensure that no part of the text or illustrations have appeared or are due to appear in other publications, without prior permission from the copyright holder.
IBB articles are published under Creative Commons licence:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.