Nosocomial Infections: Pathogenicity, Resistance and Novel Antimicrobials

Authors

DOI:

https://doi.org/10.20535/ibb.2021.5.2.228970

Keywords:

microbial pathogens, resistance factors, pathogenic factors, mechanisms of pathogenicity, antibiotic resistance, novel antimicrobial substances

Abstract

Background. The fight against the spread of infectious diseases creates the problem of resistance to pathogens and the most resistant of them – the propagators of nosocomial infections – are formed in hospitals because of a number of reasons. The solution of the problem lies in different areas, but the search of new effective means for the treatment of such diseases remains relevant right today. The shortest way to do this is to find the "pain points" of the pathogens themselves, i.e. the factors of their pathogenicity and resistance to which the action of novel antiseptics should be directed.

Objective. We aimed to analyse and evaluate the main factors of pathogenicity and resistance of pathogens of nosocomial infections to determine modern approaches to the development of novel antimicrobials.

Methods. Search and systematization of new scientific data and results concerning pathogenic factors of microbial pathogens that can be used as targets for the action of drugs.

Results. Over the last 10–20 years, due to the development of new research methods in biology, it has become possible to clarify the features and additional conditions for the detection of pathogenic factors of nosocomial infections. Additional mechanisms of manifestation of resistance, adhesiveness, invasiveness, transmission of signs, secretion of toxins by pathogens are shownthat determines the general increase of their resistance to the action of currently used means. The general idea of ​​creating antiseptics that will not increase the resistance of pathogens can now be implemented by using substances with multidirectional or indirect mechanisms of action that minimally affect the metabolism of the cell and significantly reduce its resistance and pathogenicity.

Conclusions. Factors of pathogenicity of propagators of nosocomial infections and mechanisms of their implementation can be considered as the main targets for the action of novel antiseptics that will inhibit the spread of pathogens without increasing their resistance. The promising substances for such drugs, among other things, are bacteriophages and their modifications, enzybiotics, immunobiotics, autoinducer inhibitors, quorum sensing-system inhibitors, b-lactamase inhibitors and others. Some of these substances in combination with the new generation of antibiotics significantly enhance their effectiveness and together they are able to overcome the resistance of even multidrug-resistant pathogens.

References

Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol. 2019;10:539. DOI: 10.3389/fmicb.2019.00539

Rodríguez-Rojas A, Rodríguez-Beltrán J, Couce A, Blázquez J. Antibiotics and antibiotic resistance: A bitter fight against evolution. Int J Med Microbiol. 2013;303:293-7. DOI: 10.1016/j.ijmm.2013.02.004

Urgent action needed to prevent a return to pre-antibiotic era: WHO. Geneva: WHO; 2015 Sep 9. Available from: http://www.searo.who.int/mediacentre/releases/2015/1612/en/

Hassan AK, Fatima KB, Mehboob R. Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pac J Trop Biomed. 2017;7(5):478-82. DOI: 10.1016/j.apjtb.2017.01.019

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27. DOI: 10.1016/S1473-3099(17)30753-3

Hassan AK, Aftab A, Mehboob R. Nosocomial infections and their control strategies. Asian Pac J Trop Biomed. 2015;5(7):509-14. DOI: 10.1016/j.apjtb.2015.05.001

Navidinia M. The clinical importance of emerging ESKAPE pathogens in nosocomial infections. Arch Adv Biosci. 2016;7(3):43-57. DOI: 10.22037/jps.v7i3.12584

de Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020;33(3):e00181-19. DOI: 10.1128/CMR.00181-19

Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. 2013;11(3):297-308. DOI: 10.1586/eri.13.12

Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067. DOI: 10.1155/2016/2475067

Poole K, Russell A, Lambert P. Mechanisms of antimicrobial resistance: opportunities for new targeted therapies. Adv Drug Deliv Rev. 2005;57(10):1443-5. DOI: 10.1016/j.addr.2005.05.001

Bassetti M, Righi E. Development of novel antibacterial drugs to combat multiple resistant organisms. Langenbeck's Arch Surg. 2015;400(2):153-65. DOI: 10.1007/s00423-015-1280-4

Worthington RJ, Melander C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 2013;31(3):177-84. DOI: 10.1016/j.tibtech.2012.12.006

Pizarro-Cerda J, Cossart P. Bacterial adhesion and entry into host cells. Cell. 2006;124(4):715-27. DOI: 10.1016/j.cell.2006.02.012

Ringot-Destrez B, Kalach N, Mihalache A, Gosset P, Michalski JC, Léonard R, et al. How do they stick together? Bacterial adhesinsimplicated in the binding of bacteria to the human gastrointestinal mucins. Biochem Soc Trans. 2017;45(2):389-99. DOI: 10.1042/BST20160167

Stones DH, Krachler AM. Dual function of a bacterial protein as an adhesin and extracellular effector of host GTPase signaling. Small GTPases. 2015;6(3):153-56. DOI: 10.1080/21541248.2015.1028609

Stones DH, Krachler AM. Against the tide: the role of bacterial adhesion in host colonization. Biochem Soc Trans. 2016;44(6):1571-80. DOI: 10.1042/BST20160186

Lillington J, Geibel S, Waksman G. Biogenesis and adhesion of type I and type IV pili. Biochim Biophys Acta. 2014;1840(9):2783-93. DOI: 10.1016/j.bbagen.2014.04.021

Melville S, Craig L. Type IV pili in Gram-positive bacteria. Microbiol Mol Biol Rev. 2013;77(3):323-41. DOI: 10.1128/MMBR.00063-12

Mattick JS. Type IV pili and twitching motility. Annu Rev Microbiol. 2002;56:289-314. DOI: 10.1146/annurev.micro.56.012302.160938

JooKang H, Baker EN. Structure and assembly of Gram-positive bacterial pili: unique covalent polymers. Curr Opin Struct Biol. 2012;22(2):200-07. DOI: 10.1016/j.sbi.2012.01.009

Clancy KW, Melvin JA, McCafferty DG. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers. 2010;94(4):385-96. DOI: 10.1002/bip.21472

Hendrickx AP, Budzik JM, Oh SY, Schneewind O. Architects at the bacterial surface-sortases and the assembly of pili with isopeptide bonds. Nat Rev Microbiol. 2011;9(3):166-76. DOI: 10.1038/nrmicro2520

Cossart P, Roy CR. Manipulation of host membrane machinery by bacterial pathogens. Curr Opin Cell Biol. 2010;22(4):547-54. DOI: 10.1016/j.ceb.2010.05.006

Chagnot C, Listrat A, Astruc T, Desvaux M. Bacterial adhesion to animal tissues: protein determinants for recognition of extracellular matrix components. Cell Microbiol. 2012;14(11):1687-96. DOI: 10.1111/cmi.12002

Lai Y, Rosenshine I, Leong JM, Frankel G. Intimate host attachment: enteropathogenic and enterohaemorrhagic Escherichia coli. Cell Microbiol. 2013;15(11):1796-808. DOI: 10.1111/cmi.12179

Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015;17(3):173-83. DOI: 10.1016/j.micinf.2015.01.004

Klockgether J, Tümmler B. Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Res. 2017;6:1261. DOI: 10.12688/f1000research.10506.1

Faraji F, Mahzounieh M, Ebrahimi A, Fallah F, Teymournejad O, Lajevardi B. Molecular detection of virulence genes in Pseudomonas aeruginosa isolated from children with Cystic Fibrosis and burn wounds in Iran. Microb Pathog. 2016;99:1-4. DOI: 10.1016/j.micpath.2016.07.013

Kong C, Neoh H, Nathan S. Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins. 2016;8(3):72. DOI: 10.3390/toxins8030072

Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417-33. DOI: 10.1128/MMBR.00016-10

Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11(5):355-62. DOI: 10.1016/S1473-3099(11)70059-7

Ruiz J, Pons MJ, Gomes C. Transferable mechanisms of quinolone resistance. Int J Antimicrob Agents. 2012;40(3):196-203. DOI: 10.1016/j.ijantimicag.2012.02.011

Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE, Harris SR, et al. A genomic portrait of the emergence, evolu-tion, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 2013;23(4):653-64. DOI: 10.1101/gr.147710.112

Ammerlaan HS, Harbarth S, Buiting AG, Crook DW, Fitzpatrick F, Hanberger H, et al. Secular trends in nosocomial bloodstream infections: antibiotic-resistant bacteria increase the total burden of infection. Clin Infect Dis. 2013;56(6):798-805. DOI: 10.1093/cid/cis1006

Centers for Disease Control and Prevention (CDC). Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep. 2013;62(9):165-70.

Allegranzi B, Bagheri Nejad S, Combescure C, Graafmans W, Attar H, Donaldson L, et al. Burden of endemic health-careassociated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228-41. DOI: 10.1016/S0140-6736(10)61458-4

Ko KS, Suh JY, Kwon KT, Jung SI, Park KH, Kang CI, et al. High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea. J Antimicrob Chemother. 2007;60(5):1163-7. DOI: 10.1093/jac/dkm305

Capone A, Giannella M, Fortini D, Giordano A, Meledandri M, Ballardini M, et al. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clin Microbiol Infect. 2013;19(1):23-30. DOI: 10.1111/1469-0691.12070

Kontopidou F, Plachouras D, Papadomichelakis E, Koukos G, Galani I, Poulakou G, et al. Colonization and infection by colistin-resistant Gram-negative bacteria in a cohort of critically ill patients. Clin Microbiol Infect. 2011;17(11):E9-11. DOI: 10.1111/j.1469-0691.2011.03649.x

Baadani AM, Thawadi SI, El-Khizzi NA, Omrani AS. Prevalence of colistin and tigecycline resistance in Acinetobacter baumannii clinical isolates from 2 hospitals in Riyadh Region over a 2-year period. Saudi Med J. 2013;34(4):248-53.

Napier BA, Burd EM, Satola SW, Cagle SM, Ray SM, McGann P, et al. Clinical use of colistin induces cross-resistance to host antimicrobials in Acinetobacter baumannii. mBio. 2013;4(3):e00021-13. DOI: 10.1128/mBio.00021-13

Hsu J. How covid-19 is accelerating the threat of antimicrobial resistance. BMJ. 2020;369:m1983. DOI: 10.1136/bmj.m1983

Kizny Gordon AE, Mathers AJ, Cheong EYL, Gottlieb T, Kotay S, Walker AS, et al. The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections – a systemic review of the literature. Clin Infect Dis. 2017;64(10):1435-44. DOI: 10.1093/cid/cix132

Sommer MO, Dantas G. Antibiotics and the resistant microbiome. Curr Opin Microbiol. 2011;14(5):556-63. DOI: 10.1016/j.mib.2011.07.005

Conlan S, Thomas PJ, Deming C, Park M, Lau AF, Dekker JP, et al. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med. 2014;6(254):254ra126. DOI: 10.1126/scitranslmed.3009845

Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infec Drug Resist. 2014;7:167-76. DOI: 10.2147/IDR.S48820

Juhas M. Horizontal gene transfer in human pathogens. Crit Rev Microbiol. 2015;41(1):101-8. DOI: 10.3109/1040841X.2013.804031

Klümper U, Riber L, Dechesne A, Sannazzarro A, Hansen LH, Sørensen SJ, et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. 2015;9(4):934-45. DOI: 10.1038/ismej.2014.191

Lee HH, Molla MN, Cantor CR, Collins JJ. Bacterial charity work leads to population-wide resistance. Nature. 2010;467(7311):82-5. DOI: 10.1038/nature09354

Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet. 2012;44(1):101-5. DOI: 10.1038/ng.1034

Yurtsev EA, Chao HX, Datta MS, Artemova T, Gore J. Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids. Mol Syst Biol. 2013;9:683. DOI: 10.1038/msb.2013.39

Melnyk AH, Wong A, Kassen R. The fitness costs of antibiotic resistance mutations. Evol Appl. 2015;8(3):273-83. DOI: 10.1111/eva.12196

Fernández L, Hancock REW. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev. 2012;25(4):661-81. DOI: 10.1128/CMR.00043-12

Sánchez-Romero MA, Casadesús J. Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc Natl Acad Sci. 2014;111(1):355-60. DOI: 10.1073/pnas.1316084111

Sanchez-Vicente S, Tagliafierro T, Coleman JL, Benach JL, Tokarz R. Polymicrobial nature of tick-borne diseases. mBio. 2019;10(5):e02055-19. DOI: 10.1128/mBio.02055-19

von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016;7:173. DOI: 10.3389/fmicb.2016.00173

Johnston C, Martin B, Fichant G, Polard P, Claverys JP. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol. 2014;12(3):181-96. DOI: 10.1038/nrmicro3199

Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev. 2011;35(5):957-76. DOI: 10.1111/j.1574-6976.2011.00292.x

Sutradhar I, Ching C, Desai D, Suprenant M, Briars E, Heins Z, et al. Computational model to quantify the growth of antibiotic resistant bacteria in wastewater. bioRxiv [Preprint] 2020. DOI: 10.1101/2020.10.09.333575

Weingarten RA, Johnson RC, Conlan S, Ramsburg AM, Dekker JP, Lau AF, et al. Genomic analysis of hospital plumbing reveals diverse reservoir of bacterial plasmids conferring carbapenem resistance. mBio. 2018;9(1):e02011-17. DOI: 10.1128/mBio.02011-17

Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657-86. DOI: 10.1128/CMR.18.4.657-686.2005

Breathnach AS, Cubbon MD, Karunaharan RN, Pope CF, Planche TD. Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. J Hosp Infect. 2012;82(1):19-24. DOI: 10.1016/j.jhin.2012.06.007

Pray L. Antibiotic resistance, mutation rates and MRSA. Nature Educ. 2008;1(1):30.

Blázquez J, Couce A, Rodríguez-Beltrán J, Rodríguez-Rojas A. Antimicrobials as promoters of genetic variation. Curr Opin Microbiol. 2012;15(5):561-9. DOI: 10.1016/j.mib.2012.07.007

Rushdy AA, Mabrouk MI, Abu-Sef FA, Kheiralla ZH, Mohamed Abdel-All S, Saleh NM. Contribution of different mechanisms to the resistance to fluoroquinolones in clinical isolates of Salmonella enterica. Braz J Infect Dis. 2013;17(4):431-7. DOI: 10.1016/j.bjid.2012.11.012

Foster PL. Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol. 2007;42(5):373-97. DOI: 10.1080/10409230701648494

Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell. 2010;37(3):311-20. DOI: 10.1016/j.molcel.2010.01.003

Boles BR, Singh PK. Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci. 2008;105(34):12503-8. DOI: 10.1073/pnas.0801499105

Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322-32. DOI: 10.1016/j.ijantimicag.2009.12.011

Bjarnsholt T, Givskov M. The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa. Anal Bioanal Chem. 2007;387(2):409-14. DOI: 10.1007/s00216-006-0774-x

Hirakawa H, Tomita H. Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Front Microbiol. 2013;4:114. DOI: 10.3389/fmicb.2013.00114

Tay SB, Yew WS. Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. Int J Mol Sci. 2013;14(8):16570-99. DOI: 10.3390/ijms140816570

Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials. 2006;27(11):2450-67. DOI: 10.1016/j.biomaterials.2005.11.031

Wright GD. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev. 2005;57(10):1451-70. DOI: 10.1016/j.addr.2005.04.002

Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151-71. DOI: 10.1016/j.drup.2010.08.003

Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol. 2013;12(1):35-48. DOI: 10.1038/nrmicro3155

Hassan KA, Skurray RA, Brown MH. Active export proteins mediating drug resistance in staphylococci. J Mol Microbiol Biotechnol. 2007;12(3-4):180-96. DOI: 10.1159/000099640

Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4(3):223-9. DOI: 10.4161/viru.23724

Collu F, Cascella M. Multidrug resistance and efflux pumps: insights from molecular dynamics simulations. Curr Top Med Chem. 2013;13(24):3165-83. DOI: 10.2174/15680266113136660224

Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007;446(7137):749-57. DOI: 10.1038/nature05630

Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell. 2007;128(6):1037-50. DOI: 10.1016/j.cell.2007.03.004

Fox JL. At 50th CAAC, More candidates coming from novel antimicrobial classes. Microbe Magazine. 2010;5(11):466-8. DOI: 10.1128/microbe.5.466.1

Busarakam K, Bull AT, Girard G, Labeda DP, van Wezel GP, Goodfellow M. Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie van Leeuwenhoek. 2014;105(5):849-61. DOI: 10.1007/s10482-014-0139-y

Castro JF, Razmilic V, Gomez-Escribano JP, Andrews B, Asenjo JA, Bibb MJ. Identification and heterologous expression of the chaxamycin biosynthesis gene cluster from Streptomyces leeuwenhoekii. App Environ Microbiol. 2015;81(17):5820-31. DOI: 10.1128/AEM.01039-15

Rateb ME, Houssen WE, Arnold M, Abdelrahman MH, Deng H, Harrison WT, et al. Chaxamycins A-D, bioactive ansamycins from a hyper-arid desert Streptomyces sp. J Nat Prod. 2011;74(6):1491-9. DOI: 10.1021/np200320u

Jang KH, Nam SJ, Locke JB, Kauffman CA, Beatty DS, Paul LA, et al. Anthracimycin, a potent anthrax antibiotic from a marine-derived actinomycete. Angew Chem Int Ed Engl. 2013;52(30):7822-4. DOI: 10.1002/anie.201302749

Hensler ME, Jang KH, Thienphrapa W, Vuong L, Tran DN, Soubih E, et al. Anthracimycin activity against contemporary methicillin-resistant Staphylococcus aureus. J Antibiot (Tokyo). 2014 Aug;67(8):549-53. DOI: 10.1038/ja.2014.36

Graziani EI, Ritacco FV. Phaeochromycins A-E, anti-inflammatory polyketides isolated from the soil Actinomycete Streptomyces phaeochromogenes LL-P018. J Nat Prod. 2005;68(8):1262-5. DOI: 10.1021/np0500629

Djinni I, Defant A, Kecha M, Mancini I. Antibacterial polyketides from the marine alga-derived endophitic Streptomyces sundarbansensis: a study on hydroxypyrone tautomerism. Mar Drugs. 2013;11(1):124-35. DOI: 10.3390/md11010124

Singh SB, Phillips JW, Wang J. Highly sensitive target-based whole-cell antibacterial discovery strategy by antisense RNA silencing. Curr Opin Drug Discov Devel. 2007;10(2):160-6.

Hentzer M, Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest. 2003;112(9):1300-7. DOI: 10.1172/JCI20074

Zhao X, Yu Z, Ding T. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms. 2020;8(3):425. DOI: 10.3390/microorganisms8030425

Munir S, Shah AA, Shahid M, Manzoor I, Aslam B, Rasool MH, et al. Quorum sensing interfering strategies and their implications in the management of biofilm-associated bacterial infections. Braz Arch Biol Technol. 2020;63:e20190555. DOI: 10.1590/1678-4324-2020190555

Chakraborty AK. Enzybiotics, a new class of enzyme antimicrobials targeted against multidrug-resistant superbugs. Nov Appro Drug Des Dev. 2017;2(4):555592. DOI: 10.19080/NAPDD.2017.02.555592

Tiwari R, Dhama K, Chakraborty S, Kapoor S. Enzybiotics: new weapon in the army of antimicrobials: A review. Asian J Anim Veterin Adv. 2014;9(3):144-63. DOI: 10.3923/ajava.2014.144.163

Lazarenko LM, Babenko LP, Bubnov RV, Demchenko OM, Zotsenko VM, Boyko NV, et al. Imunobiotics are the novel bio¬tech drugs with antibacterial and immunomodulatory properties. Microbiol J. 2017;79(1):66-75. DOI: 10.15407/microbiolj79.01.066

São-José C. Engineering of phage-derived lytic enzymes: Improving their potential as antimicrobials antibiotics. Antibiotics (Basel). 2018;7(2):29. DOI: 10.3390/antibiotics7020029

Xu G, Zhao Y, Du L. Hfq regulates antibacterial antibiotic biosynthesis and extracellular lytic-enzyme production in Lysobacter enzymogenes OH11. Microb Biotechnol. 2015;8(3):499-509. DOI: 10.1111/1751-7915.12246

Rios Colombo NS, Chalon MC, Navarro SA, Bellomio A. Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity. Curr Genet. 2018;64(2):345-51. DOI: 10.1007/s00294-017-0757-9

Manoharadas S, Wittle A, Blasi U. Antimicrobial activity of a chimeric enzybiotic towards Staphylococcus aureus. J Biotechnol. 2009;139(1):118-23. DOI: 10.1016/j.jbiotec.2008.09.003

Gupta PV, Nagarsenker MS. Antimicrobial and antibiofilm activity of enzybiotic against Staphylococcus aureus. In: Méndez-Vilas A, editor. The battle against microbial pathogens: Basic science, technological advances and educational programs. Formatex Research Center; 2015. p. 364-72.

Zhang J, Li Z, Cao Z, Wang L, Li X, Li S, et al. Bacteriophages as antimicrobial agents against major pathogens in swine: a review. J Anim Sci Biotechnol. 2015;6(1):39. DOI: 10.1186/s40104-015-0039-7

Patil A, Banerji R, Kanojiya P, Koratkar S, Saroj S. Bacteriophages for ESKAPE: role in pathogenicity and measures of control. Expert Rev Anti Infect Ther. 2021;8:1-21. DOI: 10.1080/14787210.2021.1858800

Downloads

Published

2021-08-12

How to Cite

1.
Wu L, Wu ZC, Todosiichuk T, Korneva O. Nosocomial Infections: Pathogenicity, Resistance and Novel Antimicrobials. Innov Biosyst Bioeng [Internet]. 2021Aug.12 [cited 2024Dec.21];5(2):73-84. Available from: https://ibb.kpi.ua/article/view/228970

Issue

Section

Articles