Nosocomial Infections: Pathogenicity, Resistance and Novel Antimicrobials
DOI:
https://doi.org/10.20535/ibb.2021.5.2.228970Keywords:
microbial pathogens, resistance factors, pathogenic factors, mechanisms of pathogenicity, antibiotic resistance, novel antimicrobial substancesAbstract
Background. The fight against the spread of infectious diseases creates the problem of resistance to pathogens and the most resistant of them – the propagators of nosocomial infections – are formed in hospitals because of a number of reasons. The solution of the problem lies in different areas, but the search of new effective means for the treatment of such diseases remains relevant right today. The shortest way to do this is to find the "pain points" of the pathogens themselves, i.e. the factors of their pathogenicity and resistance to which the action of novel antiseptics should be directed.
Objective. We aimed to analyse and evaluate the main factors of pathogenicity and resistance of pathogens of nosocomial infections to determine modern approaches to the development of novel antimicrobials.
Methods. Search and systematization of new scientific data and results concerning pathogenic factors of microbial pathogens that can be used as targets for the action of drugs.
Results. Over the last 10–20 years, due to the development of new research methods in biology, it has become possible to clarify the features and additional conditions for the detection of pathogenic factors of nosocomial infections. Additional mechanisms of manifestation of resistance, adhesiveness, invasiveness, transmission of signs, secretion of toxins by pathogens are shownthat determines the general increase of their resistance to the action of currently used means. The general idea of creating antiseptics that will not increase the resistance of pathogens can now be implemented by using substances with multidirectional or indirect mechanisms of action that minimally affect the metabolism of the cell and significantly reduce its resistance and pathogenicity.
Conclusions. Factors of pathogenicity of propagators of nosocomial infections and mechanisms of their implementation can be considered as the main targets for the action of novel antiseptics that will inhibit the spread of pathogens without increasing their resistance. The promising substances for such drugs, among other things, are bacteriophages and their modifications, enzybiotics, immunobiotics, autoinducer inhibitors, quorum sensing-system inhibitors, b-lactamase inhibitors and others. Some of these substances in combination with the new generation of antibiotics significantly enhance their effectiveness and together they are able to overcome the resistance of even multidrug-resistant pathogens.
References
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Frontiers in Microbiology. 2019;10:539. DOI: 10.3389/fmicb.2019.00539
Rodríguez-Rojas A, Rodríguez-Beltrán J, Couce A, Blázquez J. Antibiotics and antibiotic resistance: A bitter fight against evolution. International Journal of Medical Microbiology. 2013;303(6-7):293-7. DOI: 10.1016/j.ijmm.2013.02.004
Urgent action needed to prevent a return to pre-antibiotic era: WHO, 2015. Available from: https://www.who.int/southeastasia/news/detail/09-09-2015-urgent-action-needed-to-prevent-a-return-to-pre-antibiotic-era-who#:~:text=%E2%80%9CImmediate%20action%20is%20needed%20to,may%20once%20again%20kill%20millions
Khan HA, Baig FK, Mehboob R. Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pacific Journal of Tropical Biomedicine. 2017;7(5):478-82. DOI: 10.1016/j.apjtb.2017.01.019
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases. 2018;18(3):318-27. DOI: 10.1016/S1473-3099(17)30753-3
Khan HA, Ahmad A, Mehboob R. Nosocomial infections and their control strategies. Asian Pacific Journal of Tropical Biomedicine. 2015;5(7):509-14. DOI: 10.1016/j.apjtb.2015.05.001
Navidinia M. The clinical importance of emerging ESKAPE pathogens in nosocomial infections. Journal of Paramedical Sciences. 2016;7(3):43-57. DOI: 10.22037/jps.v7i3.12584
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial Resistance in ESKAPE Pathogens. Clinical Microbiology Reviews. 2020;33(3):e00181-19. DOI: 10.1128/CMR.00181-19
Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Review of Anti-infective Therapy. 2013;11(3):297-308. DOI: 10.1586/eri.13.12
Santajit S, Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Research International. 2016;2016:2475067. DOI: 10.1155/2016/2475067
Poole K, Russell A, Lambert P. Mechanisms of antimicrobial resistance: opportunities for new targeted therapies. Advanced Drug Delivery Reviews. 2005;57(10):1443-5. DOI: 10.1016/j.addr.2005.05.001
Bassetti M, Righi E. Development of novel antibacterial drugs to combat multiple resistant organisms. Langenbeck's Archives of Surgery. 2015;400(2):153-65. DOI: 10.1007/s00423-015-1280-4
Worthington RJ, Melander C. Combination approaches to combat multidrug-resistant bacteria. Trends in Biotechnology. 2013;31(3):177-84. DOI: 10.1016/j.tibtech.2012.12.006
Pizarro-Cerda J, Cossart P. Bacterial adhesion and entry into host cells. Cell. 2006;124(4):715-27. DOI: 10.1016/j.cell.2006.02.012
Ringot-Destrez B, Kalach N, Mihalache A, Gosset P, Michalski J-C, Léonard R, Robbe-Masselot C. How do they stick together? Bacterial adhesins implicated in the binding of bacteria to the human gastrointestinal mucins. Biochemical Society Transactions. 2017;45(2):389-99. DOI: 10.1042/BST20160167
Stones DH, Krachler AM. Dual function of a bacterial protein as an adhesin and extracellular effector of host GTPase signaling. Small GTPases. 2015;6(3):153-6. DOI: 10.1080/21541248.2015.1028609
Stones DH, Krachler AM. Against the tide: the role of bacterial adhesion in host colonization. Biochemical Society Transactions. 2016;44(6):1571-80. DOI: 10.1042/BST20160186
Lillington J, Geibel S, Waksman G. Biogenesis and adhesion of type I and type IV pili. Biochimica et Biophysica Acta (BBA) - General Subjects. 2014;1840(9):2783-93. DOI: 10.1016/j.bbagen.2014.04.021
Melville S, Craig L. Type IV Pili in Gram-Positive Bacteria. Microbiology and Molecular Biology Reviews. 2013;77(3):323-41. DOI: 10.1128/MMBR.00063-12
Mattick JS. Type IV Pili and Twitching Motility. Annual Review of Microbiology. 2002;56:289-314. DOI: 10.1146/annurev.micro.56.012302.160938
Kang HJ, Baker EN. Structure and assembly of Gram-positive bacterial pili: unique covalent polymers. Current Opinion in Structural Biology. 2012;22(2):200-7. DOI: 10.1016/j.sbi.2012.01.009
Clancy KW, Melvin JA, McCafferty DG. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers. 2010;94(4):385-96. DOI: 10.1002/bip.21472
Hendrickx APA, Budzik JM, Oh S-Y, Schneewind O. Architects at the bacterial surface - sortases and the assembly of pili with isopeptide bonds. Nature Reviews Microbiology. 2011;9(3):166-76. DOI: 10.1038/nrmicro2520
Cossart P, Roy CR. Manipulation of host membrane machinery by bacterial pathogens. Current Opinion in Cell Biology. 2010;22(4):547-54. DOI: 10.1016/j.ceb.2010.05.006
Chagnot C, Listrat A, Astruc T, Desvaux M. Bacterial adhesion to animal tissues: protein determinants for recognition of extracellular matrix components. Cellular Microbiology. 2012;14(11):1687-96. DOI: 10.1111/cmi.12002
Lai Y, Rosenshine I, Leong JM, Frankel G. Intimate host attachment: enteropathogenic and enterohaemorrhagic Escherichia coli. Cellular Microbiology. 2013;15(11):1796-808. DOI: 10.1111/cmi.12179
Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes and Infection. 2015;17(3):173-83. DOI: 10.1016/j.micinf.2015.01.004
Klockgether J, Tümmler B. Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Research. 2017;6:1261. DOI: 10.12688/f1000research.10506.1
Faraji F, Mahzounieh M, Ebrahimi A, Fallah F, Teymournejad O, Lajevardi B. Molecular detection of virulence genes in Pseudomonas aeruginosa isolated from children with Cystic Fibrosis and burn wounds in Iran. Microbial Pathogenesis. 2016;99:1-4. DOI: 10.1016/j.micpath.2016.07.013
Kong C, Neoh H-m, Nathan S. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy. Toxins. 2016;8(3):72. DOI: 10.3390/toxins8030072
Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews. 2010;74(3):417-33. DOI: 10.1128/MMBR.00016-10
Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. The Lancet Infectious Diseases. 2011;11(5):355-62. DOI: 10.1016/S1473-3099(11)70059-7
Ruiz J, Pons MJ, Gomes C. Transferable mechanisms of quinolone resistance. International Journal of Antimicrobial Agents. 2012;40(3):196-203. DOI: 10.1016/j.ijantimicag.2012.02.011
Holden MTG, Hsu L-Y, Kurt K, Weinert LA, Mather AE, Harris SR, et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Research. 2013;23(4):653-64. DOI: 10.1101/gr.147710.112
Ammerlaan HSM, Harbarth S, Buiting AGM, Crook DW, Fitzpatrick F, Hanberger H, et al. Secular trends in nosocomial bloodstream infections: antibiotic-resistant bacteria increase the total burden of infection. Clinical Infectious Diseases. 2013;56(6):798-805. DOI: 10.1093/cid/cis1006
Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR. Morbidity and Mortality Weekly Report. 2013;62(9):165-70.
Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, Pittet D. Burden of endemic health-careassociated infection in developing countries: systematic review and meta-analysis. The Lancet. 2011;377(9761):228-41. DOI: 10.1016/S0140-6736(10)61458-4
Ko KS, Suh JY, Kwon KT, Jung S-I, Park K-H, Kang CI, et al. High rates of resistance to colistin and polymyxin B in subgroups of Acinetobacter baumannii isolates from Korea. Journal of Antimicrobial Chemotherapy. 2007;60(5):1163-67. DOI: 10.1093/jac/dkm305
Capone A, Giannella M, Fortini D, Giordano A, Meledandri M, Ballardini M, et al. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clinical Microbiology and Infection. 2013;19(1):E23-E30. DOI: 10.1111/1469-0691.12070
Kontopidou F, Plachouras D, Papadomichelakis E, Koukos G, Galani I, Poulakou G, et al. Colonization and infection by colistin-resistant Gram-negative bacteria in a cohort of critically ill patients. Clinical Microbiology and Infection. 2011;17(11):E9-E11. DOI: 10.1111/j.1469-0691.2011.03649.x
Baadani AM, Thawadi SI, El-Khizzi NA, Omrani AS. Prevalence of colistin and tigecycline resistance in Acinetobacter baumannii clinical isolates from 2 hospitals in Riyadh Region over a 2-year period. Saudi Medical Journal. 2013;34(4):248-53.
Napier BA, Burd EM, Satola SW, Cagle SM, Ray SM, McGann P, et al. Clinical use of colistin induces cross-resistance to host antimicrobials in Acinetobacter baumannii. mBio. 2013;4(3):e00021-13. DOI: 10.1128/mBio.00021-13
Hsu J. How covid-19 is accelerating the threat of antimicrobial resistance. BMJ. 2020;369:m1983. DOI: 10.1136/bmj.m1983
Kizny Gordon AE, Mathers AJ, Cheong EYL, Gottlieb T, Kotay S, Walker AS, et al. The Hospital Water Environment as a Reservoir for Carbapenem-Resistant Organisms Causing Hospital-Acquired Infections – A Systematic Review of the Literature. Clinical Infectious Diseases. 2017;64(10):1435-44. DOI: 10.1093/cid/cix132
Sommer MOA, Dantas G. Antibiotics and the resistant microbiome. Current Opinion in Microbiology. 2011;14(5):556-63. DOI: 10.1016/j.mib.2011.07.005
Conlan S, Thomas PJ, Deming C, Park M, Lau AF, Dekker JP, et al. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Science Translational Medicine. 2014;6(254):254ra126. DOI: 10.1126/scitranslmed.3009845
Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infection and Drug Resistance. 2014;7:167-76. DOI: 10.2147/IDR.S48820
Juhas M. Horizontal gene transfer in human pathogens. Critical Reviews in Microbiology. 2015;41(1):101-8. DOI: 10.3109/1040841X.2013.804031
Klümper U, Riber L, Dechesne A, Sannazzarro A, Hansen LH, Sørensen SJ, Smets BF. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. The ISME Journal. 2015;9(4):934-45. DOI: 10.1038/ismej.2014.191
Lee HH, Molla MN, Cantor CR, Collins JJ. Bacterial charity work leads to population-wide resistance. Nature. 2010;467(7311):82-5. DOI: 10.1038/nature09354
Toprak E, Veres A, Michel J-B, Chait R, Hartl DL, Kishony R. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nature Genetics. 2012;44(1):101-5. DOI: 10.1038/ng.1034
Yurtsev EA, Chao HX, Datta MS, Artemova T, Gore J. Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids. Molecular Systems Biology. 2013;9:683. DOI: 10.1038/msb.2013.39
Melnyk AH, Wong A, Kassen R. The fitness costs of antibiotic resistance mutations. Evolutionary Applications. 2015;8(3):273-83. DOI: 10.1111/eva.12196
Fernández L, Hancock REW. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clinical Microbiology Reviews. 2012;25(4):661-81. DOI: 10.1128/CMR.00043-12
Sánchez-Romero MA, Casadesús J. Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proceedings of the National Academy of Sciences. 2014;111(1):355-60. DOI: 10.1073/pnas.1316084111
Sanchez-Vicente S, Tagliafierro T, Coleman JL, Benach JL, Tokarz R. Polymicrobial Nature of Tick-Borne Diseases. mBio. 2019;10(5):e02055-19. DOI: 10.1128/mBio.02055-19
von Wintersdorff CJH, Penders J, van Niekerk JM, Mills ND, Majumder S, van Alphen LB, et al. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Frontiers in Microbiology. 2016;7:173. DOI: 10.3389/fmicb.2016.00173
Johnston C, Martin B, Fichant G, Polard P, Claverys J-P. Bacterial transformation: distribution, shared mechanisms and divergent control. Nature Reviews Microbiology. 2014;12(3):181-96. DOI: 10.1038/nrmicro3199
Wiedenbeck J, Cohan FM. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiology Reviews. 2011;35(5):957-76. DOI: 10.1111/j.1574-6976.2011.00292.x
Sutradhar I, Ching C, Desai D, Suprenant M, Briars E, Heins Z, et al. Computational Model to Quantify the Growth of Antibiotic Resistant Bacteria in Wastewater. bioRxiv; 2020. DOI: 10.1101/2020.10.09.333575
Weingarten RA, Johnson RC, Conlan S, Ramsburg AM, Dekker JP, Lau AF, et al. Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenem Resistance. mBio. 2018;9(1):e02011-17. DOI: 10.1128/mBio.02011-17
Paterson DL, Bonomo RA. Extended-Spectrum β-Lactamases: a Clinical Update. Clinical Microbiology Reviews. 2005;18(4):657-86. DOI: 10.1128/CMR.18.4.657-686.2005
Breathnach AS, Cubbon MD, Karunaharan RN, Pope CF, Planche TD. Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. Journal of Hospital Infection. 2012;82(1):19-24. DOI: 10.1016/j.jhin.2012.06.007
Pray L. Antibiotic Resistance, Mutation Rates and MRSA. Nature Education. 2008;1(1):30.
Blázquez J, Couce A, Rodríguez-Beltrán J, Rodríguez-Rojas A. Antimicrobials as promoters of genetic variation. Current Opinion in Microbiology. 2012;15(5):561-69. DOI: 10.1016/j.mib.2012.07.007
Rushdy AA, Mabrouk MI, Abu-Sef FA-H, Kheiralla ZH, Abdel-All SM, Saleh NM. Contribution of different mechanisms to the resistance to fluoroquinolones in clinical isolates of Salmonella enterica. The Brazilian Journal of Infectious Diseases. 2013;17(4):431-37. DOI: 10.1016/j.bjid.2012.11.012
Foster PL. Stress-induced mutagenesis in bacteria. Critical Reviews in Biochemistry and Molecular Biology. 2007;42(5):373-97. DOI: 10.1080/10409230701648494
Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Molecular Cell. 2010;37(3):311-20. DOI: 10.1016/j.molcel.2010.01.003
Boles BR, Singh PK. Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proceedings of the National Academy of Sciences. 2008;105(34):12503-8. DOI: 10.1073/pnas.0801499105
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents. 2010;35(4):322-32. DOI: 10.1016/j.ijantimicag.2009.12.011
Bjarnsholt T, Givskov M. The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa. Analytical and Bioanalytical Chemistry. 2007;387(2):409-14. DOI: 10.1007/s00216-006-0774-x
Hirakawa H, Tomita H. Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Frontiers in Microbiology. 2013;4:114. DOI: 10.3389/fmicb.2013.00114
Tay SB, Yew WS. Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. International Journal of Molecular Sciences. 2013;14(8):16570-99. DOI: 10.3390/ijms140816570
Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials. 2006;27(11):2450-67. DOI: 10.1016/j.biomaterials.2005.11.031
Wright GD. Bacterial resistance to antibiotics: enzymatic degradation and modification. Advanced Drug Delivery Reviews. 2005;57(10):1451-70. DOI: 10.1016/j.addr.2005.04.002
Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resistance Updates. 2010;13(6):151-71. DOI: 10.1016/j.drup.2010.08.003
Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nature Reviews Microbiology. 2014;12(1):35-48. DOI: 10.1038/nrmicro3155
Hassan KA, Skurray RA, Brown MH. Active export proteins mediating drug resistance in staphylococci. Journal of Molecular Microbiology and Biotechnology. 2007;12(3-4):180-96. DOI: 10.1159/000099640
Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence. 2013;4(3):223-29. DOI: 10.4161/viru.23724
Collu F, Cascella M. Multidrug resistance and efflux pumps: insights from molecular dynamics simulations. Current Topics in Medicinal Chemistry. 2013;13(24):3165-83. DOI: 10.2174/15680266113136660224
Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007;446(7137):749-57. DOI: 10.1038/nature05630
Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell. 2007;128(6):1037-50. DOI: 10.1016/j.cell.2007.03.004
Fox JL. At 50th ICAAC, More Candidates Coming from Novel Antimicrobial Classes. Microbe Magazine. 2010;5(11):466-68. DOI: 10.1128/microbe.5.466.1
Busarakam K, Bull AT, Girard G, Labeda DP, van Wezel GP, Goodfellow M. Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie van Leeuwenhoek. 2014;105(5):849-61. DOI: 10.1007/s10482-014-0139-y
Castro JF, Razmilic V, Gomez-Escribano JP, Andrews B, Asenjo JA, Bibb MJ. Identification and Heterologous Expression of the Chaxamycin Biosynthesis Gene Cluster from Streptomyces leeuwenhoekii. Applied and Environmental Microbiology. 2015;81(17):5820-31. DOI: 10.1128/AEM.01039-15
Rateb ME, Houssen WE, Arnold M, Abdelrahman MH, Deng H, Harrison WTA, et al. Chaxamycins A-D, bioactive ansamycins from a hyper-arid desert Streptomyces sp. Journal of Natural Products. 2011;74(6):1491-99. DOI: 10.1021/np200320u
Jang KH, Nam S-J, Locke JB, Kauffman CA, Beatty DS, Paul LA, Fenical W. Anthracimycin, a potent anthrax antibiotic from a marine-derived actinomycete. Angewandte Chemie International Edition. 2013;52(30):7822-24. DOI: 10.1002/anie.201302749
Hensler ME, Jang KH, Thienphrapa W, Vuong L, Tran DN, Soubih E, et al. Anthracimycin activity against contemporary methicillin-resistant Staphylococcus aureus. The Journal of Antibiotics. 2014;67(8):549-53. DOI: 10.1038/ja.2014.36
Graziani EI, Ritacco FV, Bernan VS, Telliez J-B. Phaeochromycins A-E, anti-inflammatory polyketides isolated from the soil Actinomycete Streptomyces phaeochromogenes LL-P018. Journal of Natural Products. 2005;68(8):1262-65. DOI: 10.1021/np0500629
Djinni I, Defant A, Kecha M, Mancini I. Antibacterial polyketides from the marine alga-derived endophitic Streptomyces sundarbansensis: a study on hydroxypyrone tautomerism. Marine Drugs. 2013;11(1):124-35. DOI: 10.3390/md11010124
Singh SB, Phillips JW, Wang J. Highly sensitive target-based whole-cell antibacterial discovery strategy by antisense RNA silencing. Current Opinion in Drug Discovery & Development. 2007;10(2):160-6.
Hentzer M, Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. Journal of Clinical Investigation. 2003;112(9):1300-07. DOI: 10.1172/JCI20074
Zhao X, Yu Z, Ding T. Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms. 2020;8(3):425. DOI: 10.3390/microorganisms8030425
Munir S, Shah AA, Shahid M, Manzoor I, Aslam B, Rasool MH, et al. Quorum Sensing Interfering Strategies and Their Implications in the Management of Biofilm-Associated Bacterial Infections. Brazilian Archives of Biology and Technology. 2020;63:e20190555. DOI: 10.1590/1678-4324-2020190555
Chakraborty AK. Enzybiotics, A New Class of Enzyme Antimicrobials Targeted against Multidrug-Resistant Superbugs. Novel Approaches in Drug Designing & Development. 2017;2(4):555592.
Tiwari R, Dhama K, Chakraborty S, Kapoor S. Enzybiotics: New Weapon in the Army of Antimicrobials: A Review. Asian Journal of Animal and Veterinary Advances. 2014;9(3):144-63. DOI: 10.3923/ajava.2014.144.163
Lazarenko LM, Babenko LP, Bubnov RV, Demchenko OM, Zotsenko VM, Boyko NV, Spivak MYa. Immunobiotics are the Novel Biotech Drugs with Antibacterial and Immunomodulatory Properties. Mikrobiolohichnyi Zhurnal. 2017;79(1):66-75. DOI: 10.15407/microbiolj79.01.066
São-José C. Engineering of Phage-Derived Lytic Enzymes: Improving Their Potential as Antimicrobials. Antibiotics. 2018;7(2):29. DOI: 10.3390/antibiotics7020029
Xu G, Zhao Y, Du L, Qian G, Liu F. Hfq regulates antibacterial antibiotic biosynthesis and extracellular lytic-enzyme production in Lysobacter enzymogenes OH11. Microbial Biotechnology. 2015;8(3):499-509. DOI: 10.1111/1751-7915.12246
Rios Colombo NS, Chalon MC, Navarro SA, Bellomio A. Pediocin-like bacteriocins: new perspectives on mechanism of action and immunity. Current Genetics. 2018;64(2):345-51. DOI: 10.1007/s00294-017-0757-9
Manoharadas S, Wittle A, Blasi U. Antimicrobial activity of a chimeric enzybiotic towards Staphylococcus aureus. Journal of Biotechnology. 2009;139(1):118-23. DOI: 10.1016/j.jbiotec.2008.09.003
Gupta PV, Nagarsenker MS. Antimicrobial and Antibiofilm activity of Enzybiotic against Staphylococcus aureus. In: The battle against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs. Formatex Research Center; 2015, p. 364-72.
Zhang J, Li Z, Cao Z, Wang L, Li X, Li S, Xu Y. Bacteriophages as antimicrobial agents against major pathogens in swine: a review. Journal of Animal Science and Biotechnology. 2015;6(1):39. DOI: 10.1186/s40104-015-0039-7
Patil A, Banerji R, Kanojiya P, Koratkar S, Saroj S. Bacteriophages for ESKAPE: role in pathogenicity and measures of control. Expert Review of Anti-infective Therapy. 2021;19(7):845-65. DOI: 10.1080/14787210.2021.1858800
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 The autror(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The ownership of copyright remains with the Authors.
Authors may use their own material in other publications provided that the Journal is acknowledged as the original place of publication and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” as the Publisher.
Authors are reminded that it is their responsibility to comply with copyright laws. It is essential to ensure that no part of the text or illustrations have appeared or are due to appear in other publications, without prior permission from the copyright holder.
IBB articles are published under Creative Commons licence:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.