Spatial Standardization of Spect Brain Images With Perfusion Radiopharmaceuticals
DOI:
https://doi.org/10.20535/ibb.2020.4.2.195546Keywords:
SPECT, Brain, Symmetry, Image standardization, 99mTc-HMPAOAbstract
Background. In the study of 3D images of the brain according to emission computed tomography (SPECT) there is a problem of their spatial orientation for the correct construction of sections and subsequent analysis of the symmetry of effective hemisphere perfusion. The brain on the original images can take virtually any orientation, resulting in asymmetry of distribution of radiopharmaceutical agents (RPA) on sections of parallel or perpendicular coordinate axes. In turn, this can lead to incorrect interpretation of clinical data.
Objective. The purpose of the paper is development of a methodology and appropriate software module for the automated standardization of spatial orientation of the SPECT of the brain images, in particular, with 99mTc-hexamethylpropylene (99mTc-HMPAO) perfusion RPA.
Methods. 30 SPECT images of patients with different levels of brain perfusion were analyzed. Brain scintigraphic studies were performed with 99mTc- HMPAO on a gamma camera "E. Cam"(Siemens) with LEHR collimator. SPECT was performed in 15–20 min after intravenous administration of RPA. The tomographic study included the collection of 128 projections for the 128×128 matrix, the RPA activity for intravenous administration was 740 MBq. The developed method of automated standardization of spatial orientation SPECT image of the brain was implemented in the software "ScintyBrain" in Matlab 2018.
Results. The developed technique, based on finding the plane of symmetry of the hemispheres of the brain, allows determining the spatial orientation of the brain with an average error of 0.8–4°. The error in determining the angle of rotation of the sagittal sections increases with decreased perfusion of the frontal segments, and the frontal sections – depends on the presence of large-focal changes in the temporal and parietal divisions of the hemisphere.
Conclusions. A method of automated spatial standardization of SPECT images of the brain was developed. The average error of the spatial angles of rotation of 3D images is in the range of 0.8–4°. The average computer analysis of the brain's spatial orientation takes up to 40 sec. The implementation of the presented method minimizes the subjective influence of specialists on the results of processing and analysis of scintigraphic images. In addition, the automated SPECT standardization procedure can significantly reduce the time of subsequent blending of SPECT brain images with other modalities.References
Kovalev V, Thurfjell L, Lundqvist R, Pagani M. Asymmetry of SPECT perfusion image patterns as a diagnostic feature for Alzheimer's disease. In: Larsen R, Nielsen M, Sporring J, editors. Medical image computing and computer-assisted intervention – MICCAI 2006. Lecture Notes in Computer Science, vol. 4191. Berlin, Heidelberg: Springer; 2006. p. 421-8. DOI: 10.1007/11866763_52
Umemura A, Suzuka T, Yamada K. Quantitative measurement of cerebral blood flow by99mTc-HMPAO SPECT in acute ischaemic stroke: usefulness in determining therapeutic options. J Neurol Neurosurg Psychiatry. 2000;69(9):472-8. DOI: 10.1136/jnnp.69.4.472
Brinkmann B, Jones D, Stead M, Kazemi N, O'Brien T, So E, et al. Statistical parametric mapping demonstrates asymmetric uptake with Tc-99m ECD and Tc-99m HMPAO SPECT in normal brain. J Cereb Blood Flow Metab. 2012;32(1):190-8. DOI: 10.1038/jcbfm.2011.123
Waldemar G, Hasselbalch S, Andersen A, Delecluse F, Petersen P, Johnsen A, et al. 99mTc-d,I-HMPAO and SPECT of the brain in normal aging. J Cereb Blood Flow Metab. 1991;11(3):508-21. DOI: 10.1038/jcbfm.1991.95
Koyama M, Kawashima R, Ito H, Ono S, Sato K, Goto R, et al. SPECT imaging of normal subjects with technetium-99m-HMPAO and technetium-99m-ECD. J Nucl Med. 1997;38(4):587-92.
Liu SX. Symmetry and asymmetry analysis and its implications to computer-aided diagnosis: a review of the literature. J Biomed Inform. 2009;42(6):1056-64. DOI: 10.1016/j.jbi.2009.07.003
Van Laere K, Koole M, D'Asseler Y, Versijpt J, Audenaert K, Dumont F, et al. Automated stereotactic standardization of brain SPECT receptor data using single-photon transmission images. Journal Nucl Med. 2001;42(2):361-75.
Mitra N, Pauly M, Wand M, Ceylan D. Symmetry in 3D geometry: extraction and applications. Computer Graphics Forum. 2013;32(6):1-23. DOI: 10.1111/cgf.12010
Thrun S, Wegbreit B. Shape from symmetry. In: Proceedings of the 10th IEEE International Conference on Computer Vision – Volume 2 (ICCV '05). 2005; p. 1824-31. DOI: 10.1109/ICCV.2005.221
Nikolov NA, Makeev SS, Novikova TG, Chebotariova LL, Globa MV, Unevich OA, et al. Determination of absolute cerebral blood flow scintigraphy with lipophilic radiopharmaceutical. Medical Physics. 2018;79(3):36-45.
Van Laere K, Warwick J, Versijpt J, Goethals I, Audenaert K, van Heerden B, et al. Analysis of clinical brain SPECT data based on anatomic standardization and reference to normal data: an roc-based comparison of visual, semiquantitative, and voxel-based methods. J Nucl Med. 2002;43(4):458-69.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The ownership of copyright remains with the Authors.
Authors may use their own material in other publications provided that the Journal is acknowledged as the original place of publication and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” as the Publisher.
Authors are reminded that it is their responsibility to comply with copyright laws. It is essential to ensure that no part of the text or illustrations have appeared or are due to appear in other publications, without prior permission from the copyright holder.
IBB articles are published under Creative Commons licence:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.