Statistics-Based Predictions of Coronavirus Epidemic Spreading in Mainland China
DOI:
https://doi.org/10.20535/ibb.2020.4.1.195074Keywords:
Coronavirus epidemic in China, Coronavirus COVID-19, Coronavirus 2019-nCoV, Mathematical modeling of infection diseases, SIR model, Parameter identification, Statistical methodsAbstract
Background. The epidemic outbreak caused by coronavirus COVID-19 is of great interest to researches because of the high rate of the infection spread and the significant number of fatalities. A detailed scientific analysis of the phenomenon is yet to come, but the public is already interested in the questions of the epidemic duration, the expected number of patients and deaths. Long-time predictions require complicated mathematical models that need a lot of effort to identify and calculate unknown parameters. This article will present some preliminary estimates.
Objective. Since the long-time data are available only for mainland China, we will try to predict the epidemic characteristics only in this area. We will estimate some of the epidemic characteristics and present the dependencies for victim numbers, infected and removed persons versus time.
Methods. In this study we use the known SIR model for the dynamics of an epidemic, the known exact solution of the linear differential equations and statistical approach developed before for investigation of the children disease, which occurred in Chernivtsi (Ukraine) in 1988–1989.
Results. The optimal values of the SIR model parameters were identified with the use of statistical approach. The numbers of infected, susceptible and removed persons versus time were predicted and compared with the new data obtained after February 10, 2020, when the calculations were completed.
Conclusions. The simple mathematical model was used to predict the characteristics of the epidemic caused by coronavirus in mainland China. Unfortunately, the number of coronavirus victims is expected to be much higher than that predicted on February 10, 2020, since 12289 new cases (not previously included in official counts) have been added two days later. Further research should focus on updating the predictions with the use of up-to-date data and using more complicated mathematical models.
References
Timeline of the 2019–20 Wuhan coronavirus outbreak [Internet]. En.wikipedia.org. 2020 [cited 2020 Feb 15]. Available from: https://en.wikipedia.org/wiki/Timeline_of_the_2019%E2%80%9320_Wuhan_coronavirus_outbreak
Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet. 2020 Jan 31;(1):1. DOI: 10.1016/S0140-6736(20)30260-9
Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020 Jan 30;1:1. DOI: 10.1016/j.ijid.2020.01.050
Nesteruk I. Statistics based models for the dynamics of Chernivtsi children disease. Naukovi Visti NTUU KPI. 2017;5:26-34. DOI: 10.20535/1810-0546.2017.5.108577
Kermack WD, McKendrick AG. A Contribution to the mathematical theory of epidemics. J Royal Stat Soc Ser A. 1927;115:700-21.
Murray JD. Mathematical Biology I/II. New York: Springer; 2002.
Bailey NTJ. The mathematical theory of epidemics. Griffin Book Co.; 1957.
Langemann D, Nesteruk I, Prestin J. Comparison of mathematical models for the dynamics of the Chernivtsi children disease. Mathematics in Computers and Simulation. 2016;123:68-79. DOI: 10.1016/j.matcom.2016.01.003
Nesteruk I. Maximal speed of underwater locomotion. Innov Biosyst Bioeng. 2019;3(3):152-67. DOI: 10.20535/ibb.2019.3.3.177976
Draper NR, Smith H. Applied regression analysis. 3rd ed. John Wiley; 1998.
Nesteruk I. Statistics based predictions of coronavirus 2019-nCoV spreading in mainland China. MedRxiv. 2020 Feb 13;1:1. DOI: 10.1101/2020.02.12.20021931
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The ownership of copyright remains with the Authors.
Authors may use their own material in other publications provided that the Journal is acknowledged as the original place of publication and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” as the Publisher.
Authors are reminded that it is their responsibility to comply with copyright laws. It is essential to ensure that no part of the text or illustrations have appeared or are due to appear in other publications, without prior permission from the copyright holder.
IBB articles are published under Creative Commons licence:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.