Method of Threshold CT Image Segmentation of Skeletal Bones
DOI:
https://doi.org/10.20535/ibb.2019.3.1.154897Keywords:
Computed tomography, Image processing, Threshold segmentation, Morphological operations, 3D modelingAbstract
Background. Segmentation of images in the existing application software does not adequately separate the background area qualitatively, the allocation of anatomical structures, in particular skeletal bones, is partial with a significant number of artifacts, which are complicating further 3D modeling.
Objective. The aim of the paper is development of the technique for automatized CT images segmentation of skeletal bones.
Methods. The CT images of bone were segmented based on the developed algorithm, which included: threshold segmentation; morphological transformations of the unbound domains connections, the distance between them does not exceed the set value; the filling of areas with zero values, which are separated by pixels with values 1; comparison of segmentation results for neighboring sections. Testing techniques for segmentation multi-cut CT image of the patient with heterotopic ossification of the hip joints were analyzed. Segmentation results were compared with the images processed by specialists. The criteria for quality of segmentation were errors of the first and second kind: true-positive, true-negative, false-negative, false-positive voxels that were marked.
Results. The developed algorithm for automatized segmentation of skeletal bones according to CT data shows 22% more qualitative results of research objects selection compared to usual threshold method; segmentation error was less than 8%. Calculated values of specificity were 99.9%, accuracy – 99.8%, sensitivity – 92.5% and for threshold method – 99.9%, 99.3%, and 70.7% respectively.
Conclusions. The obtained results significantly reduce the time of CT images processing by a specialist in the area of radiation diagnostics and 3D printing of biological tissues and their models. Future prospects for the proposed methodology development are: its integration into specialized software tools with a user interface with a wide range of tools; improvement of machine code, reducing of computer time calculations; improvement of the segmentation algorithm, reducing of the segmentation artifacts.References
Baradeswaran A, Joshua Selvakumar L, Padma Priya R. Reconstruction of images into 3D models using CAD techniques. Euro J Appl Eng Sci Res. 2014; 3(1):1-8.
Jacobs S, Grunert R, Mohr F, Falk V. 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg. 2008;7(1):6-9. DOI: 10.1510/icvts.2007.156588
Gillaspie EA, Matsumoto JS, Morris NE, Downey RJ, Shen KR, Allen MS, et al. From 3-dimensional printing to 5-dimensional printing: enhancing thoracic surgical planning and resection of complex tumors. Ann Thorac Surg. 2016 May;101(5):1958-62. DOI: 10.1016/j.athoracsur.2015.12.075
Wu J, Belle A, Hargraves R, Cockrell C, Tang Y, Najarian K. Bone segmentation and 3D visualization of CT images for traumatic pelvic injuries. Int J Imag Syst Technol. 2014;24(1):29-38. DOI: 10.1002/ima.22076
Straka M, LaCruz А, Dimitrov LI, Köchl A. Bone segmentation in CT angiography data using a probabilistic atlas. In: Proceedings of the Vision, Modeling, and Visualization Conference 2003 (VMV 2003); 2003; München. p. 19-21.
Krcah M, Szekely G, and Blanc R. Fully automatic and fast segmentation of the femur bone from 3D-CT images with no shape prior. In: Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Science; 2011. p. 2087-90. DOI: 10.1109/ISBI.2011.5872823
Binary image segmentation using the level set method [Internet]. Habr.com. 2018 [cited Dec 2018]. Available from: https://habr.com/post/332692/
Kratky J, Kybic J. Three-dimensional segmentation of bones from CT and MRI using fast level sets. In: Proceedings of SPIE, Medical Imaging SPIE; 2008; San Diego, California. 10 p. DOI: 10.1117/12.770954
Feng D. Segmentation of bone structures in X-ray images [thesis proposal]. School of Computing National University of Singapore; 2006. 66 p.
Chai HY, Wee LK, Swee TT, Salleh S-H. Adaptive crossed reconstructed (ACR) K-mean clustering segmentationfor computer-aided bone age assessment system. Int J Math Models Methods Appl Sci. 2011;5(3):628-35.
Materialise mimics [Internet]. Materialise.com. 2018 [cited Dec 2018]. Available from: http://biomedical.materialise.com/mimics
Christensen A, Wake N. Medical image processing software [Internet]. Wohlersassociates.com. 2018 [cited Dec 2019]. Available from: http://www.wohlersassociates.com/medical2018.pdf
Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng. 2000;2:315-37. DOI: 10.1146/annurev.bioeng.2.1.315
Kalpalatha Reddy Т, Kumaravel NA, Shah AK. Assessment of trabecular bone texture from CT Images by multiresolution analysis and classification using SVM. Int J Oral Implant Clinical Res. 2010;1(2):55-60.
Morphological operations [Internet]. Mathworks.com. 2018 [cited Dec 2018]. Available from: https://www.mathworks.com/help/images/morphological-filtering.html
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 The Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
The ownership of copyright remains with the Authors.
Authors may use their own material in other publications provided that the Journal is acknowledged as the original place of publication and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” as the Publisher.
Authors are reminded that it is their responsibility to comply with copyright laws. It is essential to ensure that no part of the text or illustrations have appeared or are due to appear in other publications, without prior permission from the copyright holder.
IBB articles are published under Creative Commons licence:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.