Designing a Multi-Epitope Vaccine Candidate to MERS-CoV: An in silico Approach

Authors

  • Muhammad Nouman Majeed University of Okara; University of Central Punjab, Pakistan
  • Azhar Iqbal University of Okara, Pakistan
  • Nayab Murtaza University of Central Punjab, Pakistan
  • Leonardo David Herrera-Zúñiga Metropolitan Autonomous University, Mexico
  • Shoaib  Siddique National Yunlin University of Science and Technology, Pakistan
  • Mohsin  Raza University of Okara, Pakistan
  • Momina Hussain University of Okara, Pakistan
  • Muhammad Sajid University of Okara, Pakistan

DOI:

https://doi.org/10.20535/ibb.2024.8.3.296662

Keywords:

MERS-CoV, vaccine candidate's, molecular docking, molecular dynamics simulation, bioinformatics approaches

Abstract

Background. Middle East Respiratory Syndrome Coronavirus (MERS-CoV), associated with severe respiratory illness, originates from the Middle East region. The virus is transmitted from animals to humans, with the dromedary camel serving as a significant reservoir. The virus's high fatality rate has spurred research into vaccine development and therapeutics.

Objective. This study aimed to employ an in silico approach to design a potential vaccine candidate against MERS-CoV, focusing on the M protein as an antigen.

Methods. The FASTA sequence of M protein was used to predict B cell and major histocompatibility complex class I and class II epitopes. The best epitopes were selected from these predicted epitopes. The vaccine candi­date's construct consisted of epitopes, linkers, and a tag. The sequence of the vaccine candidate's construct, consisting of 390 amino acids, was back-translated, optimized, and then inserted into a plasmid for cloning and expression using SnapGene. The 3D structure of the vaccine candidate is docked with TLR-4 receptor. Molecular dynamics simulation was run for this docked complex using GROMACS gmx, version 2021.4.

Results. Through computational modeling and analysis, we developed a novel vaccine candidate with pro­mising structural and functional properties. Our results suggest that the designed vaccine candidate has the potential to induce a robust immune response.

Conclusions. This in silico approach presents a promising MERS-CoV vaccine candidate designed to trigger both humoral and cellular immune responses. This candidate holds the potential to provide broad-spectrum protection against MERS-CoV.

References

Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012 Nov 8;367(19):1814-20. DOI: 10.1056/NEJMoa1211721

Munster VJ, Adney DR, van Doremalen N, Brown VR, Miazgowicz KL, Milne-Price S, et al. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci Rep. 2016 Feb 22;6(1):21878. DOI: 10.1038/srep21878

Ali MA, Shehata MM, Gomaa MR, Kandeil A, El-Shesheny R, Kayed AS, et al. Systematic, active surveillance for Middle East respiratory syndrome coronavirus in camels in Egypt. Emerg Microbes Infect. 2017 Jan 4;6(1):e1. DOI: 10.1038/emi.2016.130

Alhakeem RF, Midgley CM, Assiri AM, Alessa M, Al Hawaj H, Saeed AB, et al. Exposures among MERS case-patients, Saudi Arabia, January-February 2016. Emerg Infect Dis. 2016 Nov;22(11):2020-2. DOI: 10.3201/eid2211.161042

Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013 Sep;13(9):752-61. DOI: 10.1016/S1473-3099(13)70204-4

European Centre for Disease Prevention and Control. MERS-CoV worldwide overview [Internet] ECDC; 2023 [cited 2024 Jun 10]. Available from: https://www.ecdc.europa.eu/en/middle-east-respiratory-syndrome-coronavirus-mers-cov-situation-update

Zhou Y, Jiang S, Du L. Prospects for a MERS-CoV spike vaccine. Expert Rev Vaccines. 2018 Aug;17(8):677-86. DOI: 10.1080/14760584.2018.1506702

Ramadan N, Shaib H. Middle East respiratory syndrome coronavirus (MERS-CoV): A review. Germs. 2019;9(1):35-42. DOI: 10.18683/germs.2019.1155

van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012 Nov 20;3(6):e00473-12. DOI: 10.1128/mBio.00473-12

Perrier A, Bonnin A, Desmarets L, Danneels A, Goffard A, Rouillé Y, et al. The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. J Biol Chem. 2019 Sep 27;294(39):14406-21. DOI: 10.1074/jbc.RA119.008964

de Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. In: Virus Structure and Assembly. Elsevier; 2005;64:165-230. DOI: 10.1016/S0065-3527(05)64006-7

Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007;8(1):4. DOI: 10.1186/1471-2105-8-4

Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021 Jan 8;49(D1):D10-7. DOI: 10.1093/nar/gkaa892

Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019 Jan 8;47(D1):D339-43. DOI: 10.1093/nar/gky1006

Dimitrov I, Flower DR, Doytchinova I. AllerTOP - a server for in silico prediction of allergens. BMC Bioinformatics. 2013;14(Suppl 6):S4. DOI: 10.1186/1471-2105-14-S6-S4

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP. In silico approach for predicting toxicity of peptides and proteins. PLoS One. 2013 Sep 13;8(9):e73957. DOI: 10.1371/journal.pone.0073957

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein Identification and Analysis Tools on the ExPASy Server. In: Walker JM, editor. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press; 2005. pp. 571-607. DOI: 10.1385/1-59259-890-0:571

McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000 Apr;16(4):404-5. DOI: 10.1093/bioinformatics/16.4.404

Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015 Jan;12(1):7-8. DOI: 10.1038/nmeth.3213

Ko J, Park H, Heo L, Seok C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012 Jul;40(W1):W294-7. DOI: 10.1093/nar/gks493

Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007 Jul;35(Web Server):W407-10. DOI: 10.1093/nar/gkm290

Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 1993;26(2):283-291. DOI: 10.1107/S0021889892009944

Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022 Jul 5;50(W1):W276-9. DOI: 10.1093/nar/gkac240

Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005 Jul 1;33(Web Server):W526-31. DOI: 10.1093/nar/gki376

Dey J, Mahapatra SR, Patnaik S, Lata S, Kushwaha GS, Panda RK, et al. Molecular characterization and designing of a novel multiepitope vaccine construct against Pseudomonas aeruginosa. Int J Pept Res Ther. 2022;28(2):49. DOI: 10.1007/s10989-021-10356-z

Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009 Apr 30;458(7242):1191-5. DOI: 10.1038/nature07830

Desta IT, Porter KA, Xia B, Kozakov D, Vajda S. Performance and its limits in rigid body protein-protein docking. Structure. 2020 Sep 1;28(9):1071-81.e3. DOI: 10.1016/j.str.2020.06.006

Bekker H, Berendsen H, Dijkstra E, Achterop S, Vondrumen R, Vanderspoel D, et al. Gromacs - a parallel computer for molecular-dynamics simulations. In: DeGroot RA, Nadrchal J, editors. Physics Computing '92: Proceedings of the 4th International Conference. Singapore: World Scientific Publishing; 1993. pp. 252-6. DOI: 10.1142/9789814536295

Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E. Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput. 2010 Feb 9;6(2):459-66. DOI: 10.1021/ct900549r

Turner, P. J. XMGRACE, Version 5.1.19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology. Beaverton, OR: 2005.

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 Feb;14(1):33-8. DOI: 10.1016/0263-7855(96)00018-5

Van Den Akker F, Pizza M, Rappuoli R, Hol WGJ. Crystal structure of a non-toxic mutant of heat-labile enterotoxin, which is a potent mucosal adjuvant. Protein Sci. 1997 Dec;6(12):2650-4. DOI: 10.1002/pro.5560061220

Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993 Sep;2(9):1511-9. DOI: 10.1002/pro.5560020916

Castiglione F, Bernaschi M. C-ImmSim: playing with the immune response. In: Proceedings of 16h International Symposium on Mathematical Theory of Networks and Systems; Jul 5–9, 2004; Leuven, Belgium.

Porter KA, Xia B, Beglov D, Bohnuud T, Alam N, Schueler-Furman O, et al. ClusPro PeptiDock: efficient global docking of peptide recognition motifs using FFT. Bioinformatics. 2017 Oct 15;33(20):3299-301. DOI: 10.1093/bioinformatics/btx216

Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011 Oct 24;51(10):2778-86. DOI: 10.1021/ci200227u

Tahir Ul Qamar M, Rehman A, Tusleem K, Ashfaq UA, Qasim M, Zhu X, et al. Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches. PLoS One. 2020 Dec 22;15(12):e0244176. DOI: 10.1371/journal.pone.0244176

Shi J, Zhang J, Li S, Sun J, Teng Y, Wu M, et al. Epitope-based vaccine target screening against highly pathogenic MERS-CoV: An in silico approach applied to emerging infectious diseases. PLoS One. 2015;10(12):e0144475. DOI: 10.1371/journal.pone.0144475

Mahmud S, Rafi MO, Paul GK, Promi MM, Shimu MSS, Biswas S, et al. Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Sci Rep. 2021;11(1):15431. DOI: 10.1038/s41598-021-92176-1

Downloads

Published

2024-07-23

How to Cite

1.
Majeed MN, Iqbal A, Murtaza N, Herrera-Zúñiga LD, Siddique S, Raza M, Hussain M, Sajid M. Designing a Multi-Epitope Vaccine Candidate to MERS-CoV: An in silico Approach. Innov Biosyst Bioeng [Internet]. 2024Jul.23 [cited 2024Dec.21];8(3):3-17. Available from: https://ibb.kpi.ua/article/view/296662

Issue

Section

Articles