Toxicity Factors of Magnetite Nanoparticles and Methods of Their Research
DOI:
https://doi.org/10.20535/ibb.2024.8.1.288067Keywords:
magnetite nanoparticle, ; nanotoxicity assessment, toxicity factor, toxicity mechanismAbstract
Among nanoparticles (NPs) of metal oxides, magnetite NPs are the most well-known. The need for regulations related to the safety of magnetite NPs requires a deep understanding of their toxicological paradigm. The purpose of the presented review is to analyze the methods of studying the magnetite NPs toxicity and to summarize their toxicity factors based on the literature data. Literature sources were searched in the PubMed database, and 99 works were selected, supplemented with articles from other databases in some cases. It is shown that the study of the magnetite NPs toxicity became widespread during the last decade, reflecting the expansion of the list of synthesized magnetic NPs and the awareness that the prospects for their use depend on the safety of the created nanomaterial. The safety assessment of magnetite NPs on cell lines is the most popular. Primitive and more highly organized animals can be used to evaluate various aspects of the magnetite NPs toxicity. The toxicity factors of magnetite NPs depend on their characteristics (core composition, coating, size, and shape) and the mode of application (concentration, dose, exposure, type of cells, or animal model). One of the main mechanisms of nanomagnetite toxicity is the interference with iron metabolism and increased generation of reactive oxygen species leading to the disruption of cell proliferation, viability, and metabolism. Thus, the toxicity of magnetite NPs is studied by various methods and at different levels of living systems. Understanding the mechanisms of nanotoxicity should contribute to the targeted design of safe magnetic NPs.
References
Bossmann SH, Payne MM, Kalita M, Bristow RMD, Afshar A, Perera AS. Iron-based magnetic nanosystems for diagnostic imaging and drug delivery: towards transformative biomedical applications. Pharmaceutics. 2022;14(10):2093. DOI: 10.3390/pharmaceutics14102093
Makhdoumi P, Karimi H, Khazaei M. Review on metal-based nanoparticles: role of reactive oxygen species in renal toxicity. Chem Res Toxicol. 2020;33(10):2503-14. DOI: 10.1021/acs.chemrestox.9b00438
Tran HV, Ngo NM, Medhi R, Srinoi P, Liu T, Rittikulsittichai S, Lee TR. Multifunctional iron oxide magnetic nanoparticles for biomedical applications: A Review. Materials (Basel). 2022;15(2):503. DOI: 10.3390/ma15020503
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological aspects of iron oxide nanoparticles. In: Nanotoxicology in Safety Assessment of Nanomaterials. Cham: Springer International Publishing. 2022;1357:303-50. DOI: 10.1007/978-3-030-88071-2_13
Wu Y, Lu Z, Li Y, Yang J, Zhang X. Surface modification of iron oxide-based magnetic nanoparticles for cerebral theranostics: application and prospection. Nanomaterials (Basel). 2020;10(8):1441. DOI: 10.3390/nano10081441
Avasthi A, Caro C, Pozo-Torres E, Leal MP, García-Martín ML. Magnetic nanoparticles as MRI contrast agents. Top Curr Chem (Cham). 2020;378(3):40. DOI: 10.1007/s41061-020-00302-w
Grauer O, Jaber M, Hess K, Weckesser M, Schwindt W, Maring S, et al. Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients. J Neurooncol. 2019;141(1):83-94. DOI: 10.1007/s11060-018-03005-x
Huang Y, Hsu JC, Koo H, Cormode DP. Repurposing ferumoxytol: diagnostic and therapeutic applications of an FDA-approved nanoparticle. Theranostics. 2022;12(2):796-816. DOI: 10.7150/thno.67375
Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nano-particles for biomedical applications. Adv Health Mater. 2018;7(5). DOI: 10.1002/adhm.201700845
Wen W, Wu L, Chen Y, Qi X, Cao J, Zhang X, et al. Ultra-small Fe3O4 nanoparticles for nuclei targeting drug delivery and photothermal therapy. J Drug Deliv Sci Technol. 2020,58:101782. DOI: 10.1016/j.jddst.2020.101782
Alkhayal A, Fathima A, Alhasan AH, Alsharaeh EH. PEG coated Fe3O4/RGO nano-cube-like structures for cancer therapy via magnetic hyperthermia. Nanomaterials. 2021;11:2398. DOI: 10.3390/nano11092398
Vazhnichaya E, Lytvyn S, Kurapov Y, Semaka O, Lutsenko R, Chunikhin A. The influence of pure (ligandless) magnetite nanoparticles functionalization on blood gases and electrolytes in acute blood loss. Nanomedicine. 2023;50:102675. DOI: 10.1016/j.nano.2023.102675
Gindaba GT, Demsash HD, Jayakumar M. Green synthesis, characterization, and application of metal oxide nanoparti-cles for mercury removal from aqueous solution. Environ Monit Assess. 2022;195(1):9. DOI: 10.1007/s10661-022-10586-8
Rajput MK, Hazarika R, Sarma D. Removal of As(III)/As(V) from aqueous solution using newly developed thiosalicylic acid coated magnetite [TSA@Fe3O4] nanoparticles. Environ Sci Pollut Res Int. 2023;30(9):23348-62. DOI: 10.1007/s11356-022-23852-6
Huang H, Guo T, Wang K, Li Y, Zhang G. Efficient activation of persulfate by a magnetic recyclable rape straw biochar catalyst for the degradation of tetracycline hydrochloride in water. Sci Total Environ. 2021;758:143957. DOI: 10.1016/j.scitotenv.2020.143957
Ebrahiminezhad A, Taghizadeh SM, Ghasemi Y, Berenjian A. Immobilization of cells by magnetic nanoparticles. In: Immobilization of Enzymes and Cells: Methods and Protocols. New York, NY: Springer US. 2020;2100:427-35. DOI: 10.1007/978-1-0716-0215-7_29
Liu M, Ye Y, Ye J, Gao T, Wang D, Chen G, Song Z. Recent advances of magnetite (Fe3O4)-based magnetic materials in catalytic applications. Magnetochemistry. 2023;9(4):110. DOI: 10.3390/magnetochemistry9040110
Dudchenko N, Pawar S, Perelshtein I, Fixler D. Magnetite nanoparticles: synthesis and applications in optics and nanophotonics. Materials (Basel). 2022;15(7):2601. DOI: 10.3390/ma15072601
Salimi P, Norouzi O, Pourhosseini SEM. Two-step synthesis of nanohusk Fe3O4 embedded in 3D network pyrolytic marine biochar for a new generation of anode materials for lithium-ion batteries. J Alloys Compd. 2019;786:930-7. DOI: 10.1016/j.jallcom.2019.02.048
Malhotra N, Lee JS, Liman RAD, Ruallo JMS, Villaflores OB, Ger TR, Hsiao CD. Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules. 2020;25(14):3159. DOI: 10.3390/molecules25143159
Jogaiah S, Paidi MK, Venugopal K, Geetha N, Mujtaba M, Udikeri SS, Govarthanan M. Phytotoxicological effects of engineered nanoparticles: an emerging nanotoxicology. Sci Total Environ. 2021;801:149809. DOI: 10.1016/j.scitotenv.2021.149809
Klekotka U, Rogacz D, Szymanek I, Malejko J, Rychter P, Kalska-Szostko B. Ecotoxicological assessment of magnetite and magnetite/Ag nanoparticles on terrestrial and aquatic biota from different trophic levels. Chemosphere. 2022;308(Pt 3):136207. DOI: 10.1016/j.chemosphere.2022.136207
Zhang Q, Lu D, Wang D, Yang X, Zuo P, Yang H, et al. Separation and tracing of anthropogenic magnetite nanoparticles in the urban atmosphere. Environ Sci Technol. 2020;54(15):9274-84. DOI: 10.1021/acs.est.0c01841
Maher BA. Airborne magnetite- and iron-rich pollution nanoparticles: potential neurotoxicants and environmental risk factors for neurodegenerative disease, including Alzheimer's disease. J Alzheimers Dis. 2019;71(2):361-75. DOI: 10.3233/JAD-190204
Scientific Committee on Consumer Safety. Guidance on the safety assessment of nanomaterials in cosmetics. SCCS/1611/19 [Internet]. [cited 2022 Nov 28]. Available from: https://health.ec.europa.eu/system/files/2020-10/sccs_o_233_0.pdf
Niculescu AG, Chircov C, Grumezescu AM. Magnetite nanoparticles: synthesis methods – a comparative review. Methods. 2022;199:16-27. DOI: 10.1016/j.ymeth.2021.04.018
Soenen SJ, De Cuyper M. How to assess cytotoxicity of (iron oxide-based) nanoparticles. A technical note using cati-onic magnetoliposomes. Contrast Media Mol Imaging. 2011;6:153-64. DOI: 10.1002/cmmi.415
Schrand AM, Dai L, Schlager JJ, Hussain SM. Toxicity testing of nanomaterials. In: New Technologies for Toxicity Testing. New York, NY: Springer US. 2012;745:58-75. DOI: 10.1007/978-1-4614-3055-1_5
Schneider CA, Rasband WS, Eliceiri KW. NIH image to imageJ: 25 years of image analysis. Nat. Methods. 2012;9:671-5. DOI: 10.1038/nmeth.2089
Kedziorek DA, Muja N, Walczak P, Ruiz-Cabello J, Gilad AA, Jie CC, Bulte JW. Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magnetic Resonance in Medicine. 2010;63(4):1031-43. DOI: 10.1002/mrm.22290
Buyukhatipoglu K, Clyne AM. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J Biomed Mater Res. Part A. 2011;96:186-95. DOI: 10.1002/jbm.a.32972
Liu G, Gao J, Ai H, Chen X. Applications and potential toxicity of magnetic iron oxide nanoparticles. Small. 2013;9:1533-45. DOI: 10.1002/smll.201201531
Monteiro-Riviere N, Inman A, Zhang L. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharm. 2009;234:222-35. DOI: 10.1016/j.taap.2008.09.030
Creangă DE, Culea M, Nădejde C, Oancea S, Curecheriu L, Racuciu M. Magnetic nanoparticle effects on the red blood cells. J Phys Conf Ser. 2009;170(1):012019. DOI: 10.1088/1742-6596/170/1/012019
Stamopoulos D, Manios E, Gogola V, Niarchos D, Pissas M. On the biocompatibility of Fe3O4 ferromagnetic nanoparticles with human blood cells. J Nanosci Nanotechnol. 2010;10(9):6110-5. DOI: 10.1166/jnn.2010.2616
Ran Q, Xiang Y, Liu Y, Xiang L, Li F, Deng X, et al. Eryptosis indices as a novel predictive parameter for biocompatibility of Fe3O4 magnetic nanoparticles on erythrocytes. Sci Rep. 2015;5:16209. DOI: 10.1038/srep16209
Müller K, Skepper JN, Posfai M, Trivedi R, Howarth S, Corot C, et al. Effect of ultrasmall superparamagnetic iron oxide nanoparticles (ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials. 2007;28:1629-42. DOI: 10.1016/j.biomaterials.2006.12.003
Ma W, Gehret PM, Hoff RE, Kelly LP, Suh WH. The investigation into the toxic potential of iron oxide nanoparticles uti-lizing rat pheochromocytoma and human neural stem cells. Nanomaterials. 2019;9:453. DOI: 10.3390/nano9030453
Lin YR, Kuo CJ, Lin HYH, Wu CJ, Liang SS. A proteomics analysis to evaluate cytotoxicity in NRK-52e cells caused by unmodified nano-Fe3O4. Sci World J. 2014;2014:1-9. DOI: 10.1155/2014/754721
Salehiabar M, Nosrati H, Davaran S, Danafar H, Manjili HK. Facile synthesis and characterization of l-aspartic acid coated iron oxide magnetic nanoparticles (IONPs) for biomedical applications. Drug Res (Stuttg). 2018;68(5):280-5. DOI: 10.1055/s-0043-120197
Mejías R, Gutiérrez L, Salas G, Pérez-Yagüe S, Zotes TM, Lázaro FJ, et al. Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications. J Control Re-lease. 2013;171:225-33. DOI: 10.1016/j.jconrel.2013.07.019
Coccini T, De Simone U, Roccio M, Croce S, Lenta E, Zecca M, et al. In vitro toxicity screening of magnetite nanoparticles by applying mesenchymal stem cells derived from human umbilical cord lining. J Appl Toxicol. 2019;39(9):1320-36. DOI: 10.1002/jat.3819
De Simone U, Croce AC, Pignatti P, Buscaglia E, Caloni F, Coccini T. Three-dimensional spheroid cell culture of human MSC-derived neuron-like cells: New in vitro model to assess magnetite nanoparticle-induced neurotoxicity effects. J Appl Toxicol. 2022;42(7):1230-52. DOI: 10.1002/jat.4292
Taze C, Panetas I, Kalogiannis S, Feidantsis K, Gallios GP, Kastrinaki G, et al. Toxicity assessment and comparison between two types of iron oxide nanoparticles in Mytilus galloprovincialis. Aquat Toxicol 2016;172:9-20. DOI: 10.1016/j.aquatox.2015.12.013
Hafiz SM, Kulkarni SS, Thakur MK. In-vivo toxicity assessment of biologically synthesized iron oxide nanoparticles in zebrafish (Danio rerio). Biosci Biotechnol Res Asia. 2018;15:419-25. DOI: 10.13005/bbra/2645
Marin-Barba M, Gavilán H, Gutierrez L, Lozano-Velasco E, Rodríguez-Ramiro I, Wheeler G, et al. Unravelling the mechanisms that determine the uptake and metabolism of magnetic single and multicore nanoparticles in a xenopus laevis model. Nanoscale. 2018;10:690-704. DOI: 10.1039/C7NR06020C
Rivero M, Marín-Barba M, Gutiérrez L, Lozano-Velasco E, Wheeler G, Sánchez-Marcos J, et al. Toxicity and biodegradation of zinc ferrite nanoparticles in Xenopus laevis. J Nanopart Res. 2019;21:181. DOI: 10.1007/s11051-019-4631-1
Katsnelson BA, Degtyareva TD, Minigalieva II, Privalova LI, Kuzmin SV, Yeremenko OS, et al. Subchronic systemic toxicity and bioaccumulation of Fe3O4 nano- and microparticles following repeated intraperitoneal administration to rats. Int J Toxicol. 2011;30(1):59-68. DOI: 10.1177/1091581810385149
Fahmy HM, Aly EM, Mohamed FF, Noor NA, Elsayed AA. Neurotoxicity of green- synthesized magnetic iron oxide nano-particles in different brain areas of wistar rats. Neurotoxicology. 2020;77:80-93. DOI: 10.1016/j.neuro.2019.12.014
Volkovova K, Handy RD, Staruchova M, Tulinska J, Kebis A, Pribojova J, et al. Health effects of selected nanoparticles in vivo: Liver function and hepatotoxicity following intravenous injection of titanium dioxide and Na-oleate-coated iron oxide nanoparticles in rodents. Nanotoxicology. 2015;9:95-105. DOI: 10.3109/17435390.2013.815285
Awaad A, Seleem A. Histochemical changes in neonatal liver caused by vaginal instillation of magnetic nanoparticles in pregnant mice. Biotech Histochem. 2016;91:482. DOI: 10.3109/10520295.2015.1072770
Gamal A, Kortam LE, El Ghareeb AEW, El Rahman HAA. Assessment of the potential toxic effect of magnetite nanoparticles on the male reproductive system based on immunological and molecular studies. Andrologia. 2022;54(11):e14613. DOI: 10.1111/and.14613
Laurent S, Burtea C, Thirifays C, Häfeli UO, Mahmoudi M. Crucial ignored parameters on nanotoxicology: The importance of toxicity assay modifications and "cell vision". PLoS ONE. 2012;7:e29997. DOI: 10.1371/journal.pone.0029997
Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, et al. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharm. 2011;253:81-93. DOI: 10.1016/j.taap.2011.03.011
Correia Carreira S, Walker L, Paul K, Saunders M. The toxicity, transport and uptake of nanoparticles in the in vitro BeWo b30 placental cell barrier model used within NanoTEST. Nanotoxicology. 2015;9:66-78. DOI: 10.3109/17435390.2013.833317
Marcus M, Karni M, Baranes K, Levy I, Alon N, Margel S, Shefi O. Iron oxide nanoparticles for neuronal cell applications: Uptake study and magnetic manipulations. J Nanobiotechnol. 2016;14:37. DOI: 10.1186/s12951-016-0190-0
Häfeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, et al. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm. 2009;6:1417-28. DOI: 10.1021/mp900083m
Zheng M, Lu J, Zhao D. Effects of starch-coating of magnetite nanoparticles on cellular uptake, toxicity and gene expression profiles in adult zebrafish. Sci Total Environ. 2018;622-623:930-41. DOI: 10.1016/j.scitotenv.2017.12.018
Ahmad A, Ansari MM, Kumar A, Vyawahare A, Mishra RK, Jayamurugan G, et al. Comparative acute intravenous toxicity study of triple polymer-layered magnetic nanoparticles with bare magnetic nanoparticles in Swiss albino mice. Nanotoxicology. 2020;14(10):1362-80. DOI: 10.1080/17435390.2020.1829144
Lytvyn S, Vazhnichaya E, Kurapov Y, Semaka O, Babijchuk L, Zubov P. Cytotoxicity of magnetite nanoparticles deposited in sodium chloride matrix and their functionalized analogues in erythrocytes. OpenNano. 2023;11:100143. DOI: 10.1016/j.onano.2023.100143
Malhotra N, Audira G, Chen JR, Siregar P, Hsu HS, Lee JS, et al. Surface modification of magnetic nanoparticles by carbon-coating can increase its biosafety: Evidences from biochemical and neurobehavioral tests in zebrafish. Molecules. 2020;25:2256. DOI: 10.3390/molecules25092256
Ciampor F, Vavra I, Lorenzo Y, Collins A, Rinna A, Fjellsbø L, et al. Coating-dependent induction of cytotoxicity and genotoxicity of iron oxide nanoparticles. Nanotoxicology. 2015;9(Suppl 1):44-56. DOI: 10.3109/17435390.2013.847505
Xie Y, Liu D, Cai C, Chen X, Zhou Y, Wu L, et al. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells. Int J Nanomedicine. 2016;11:3557-70. DOI: 10.2147/IJN.S105575
Nowak-Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnol. 2022;20(1):305. DOI: 10.1186/s12951-022-01510-w
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995-4021. DOI: 10.1016/j.biomaterials.2004.10.012
Nowak-Jary J, Machnicka B. In vivo biodistribution and clearance of magnetic iron oxide nanoparticles for medical applications. Int J Nanomedicine 2023;18:4067-100. DOI: 10.2147/IJN.S415063
Dönmez Güngüneş Ç, Şeker Ş, Elçin AE, Elçin YM. A comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes and iron oxide nanoparticles. Drug Chem Toxicol. 2017;40(2):215-27. DOI: 10.1080/01480545.2016.1199563
Malhotra N, Chen JR, Sarasamma S, Audira G, Siregar P, Liang ST, et al, Ecotoxicity assessment of Fe3O4 magnetic nanoparticle exposure in adult zebrafish at an environmental pertinent concentration by behavioral and biochemical testing. Nanomaterials. 2019;9:873. DOI: 10.3390/nano9060873
Klien K, Godnić-Cvar J. Genotoxicity of metal nanoparticles: focus on in vivo studies. Arh Hig Rada Toksikol. 2012;63(2):133-45. DOI: 10.2478/10004-1254-63-2012-2213
Coccini T, Caloni F, Ramírez Cando LJ, De Simone U. Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles. J Appl Toxicol. 2017;37(3):361-73. DOI: 10.1002/jat.3367
Van de Walle A, Plan Sangnier A, Abou-Hassan A, Curcio A, Hémadi M, Menguy N, et al. Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells. Proc Natl Acad Sci. 2019;116:4044-53. DOI: 10.1073/pnas.1816792116
Vakili-Ghartavol R, Momtazi-Borojeni AA, Vakili-Ghartavol Z, Aiyelabegan HT, Jaafari MR, Rezayat SM, et al. Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artif Cells Nanomed Biotechnol. 2020;48(1):443-51. DOI: 10.1080/21691401.2019.1709855
Kaloyianni M, Dimitriadi A, Ovezik M, Stamkopoulou D, Feidantsis K, Kastrinaki G, et al. Magnetite nanoparticles effects on adverse responses of aquatic and terrestrial animal models. J Hazard Mater. 2020;383:121204. DOI: 10.1016/j.jhazmat.2019.121204
Mohammed ET, Hashem KS, Abdelazem AZ, Foda FAMA. Prospective protective effect of ellagic acid as a SIRT1 activator in iron oxide nanoparticle-induced renal damage in rats. Biol Trace Elem Res. 2020;198(1):177-88. DOI: 10.1007/s12011-020-02034-w
Rocha JMV, de Souza VB, Panunto PC, Nicolosi JS, da Silva EDN, Cadore S, et aI. In vitro and in vivo acute toxicity of a novel citrate-coated magnetite nanoparticle. PLoS One. 2022;17(11):e0277396. DOI: 10.1371/journal.pone.0277396
Yang CY, Hsiao JK, Tai MF, Chen ST, Cheng HY, Wang JL, et al. Direct labeling of hMSC with SPIO: The long-term influence on toxicity, chondrogenic differentiation capacity, and intracellular distribution. Mol Imag Biol. 2011;13:443-51. DOI: 10.1007/s11307-010-0360-7
Ahamed M, Alhadlaq HA, Alam J, Khan MA, Ali D, Alarafi S. Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Curr Pharm Des. 2013;19(37):6681-90. DOI: 10.2174/1381612811319370011
Alarifi S, Ali D, Alkahtani S, Alhader MS. Iron oxide nanoparticles induce oxidative stress, DNA damage, and caspase activation in the human breast cancer cell line. Biol Trace Elem Res. 2014;159(1-3):416-24. DOI: 10.1007/s12011-014-9972-0
Gaharwar US, Meena R, Rajamani P. Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes. J Appl Toxicol. 2017;37(10):1232-44. DOI: 10.1002/jat.3485
Fernández-Bertólez N, Costa C, Bessa MJ, Park M, Carriere M, Dussert F, et al. Assessment of oxidative damage induced by iron oxide nanoparticles on different nervous system cells. Mutat Res Genet Toxicol Environ Mutagen. 2019;845:402989. DOI: 10.1016/j.mrgentox.2018.11.013
Wu L, Wen W, Wang X, Huang D, Cao J, Qi X, Shen S. Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs. Part Fibre Toxicol. 2022;19(1):24. DOI: 10.1186/s12989-022-00465-y
Mishra M, Panda M. Reactive oxygen species: the root cause of nanoparticle-induced toxicity in Drosophila melanogaster. Free Radic Res. 2021;55(6):671-87. DOI: 10.1080/10715762.2021.1914335
Guarnieri D, Sabella S, Muscetti O, Belli V, Malvindi MA, Fusco S, et al. Transport across the cell-membrane dictates nanoparticle fate and toxicity: a new paradigm in nanotoxicology. Nanoscale. 2014;6(17):10264-73. DOI: 10.1039/C4NR02008A
Wang S, Wang Z, Li Z, Xu J, Meng X, Zhao Z, Hou Y. A catalytic immune activator based on magnetic nanoparticles to reprogram the immunoecology of breast cancer from "cold" to "hot" state. Adv Healthc Mater. 2022;11(21):e2201240. DOI: 10.1002/adhm.202201240
Wu J, Ding T, Sun J. Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology. 2013;34:243-53. DOI: 10.1016/j.neuro.2012.09.006
Pogribna M, Hammons G. Epigenetic effects of nanomaterials and nanoparticles. J Nanobiotechnol. 2021;19:2. DOI: 10.1186/s12951-020-00740-0
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. Overview of the beneficial role of antioxidants in the treatment of nanoparticle-induced toxicities. Oxid Med Cell Longev. 2021;2021:7244677. DOI: 10.1155/2021/7244677
Horie M, Tabei Y. Role of oxidative stress in nanoparticles toxicity. Free Radical Res. 2021;55(4):331-42. DOI: 10.1080/10715762.2020.1859108
Laubertova L, Dvorakova M, Balis P, Puzserova A, Zitnanova I, Bernatova I. Preliminary findings on the effect of ultrasmall superparamagnetic iron oxide nanoparticles and acute stress on selected markers of oxidative stress in normotensive and hypertensive rats. Antioxidants. 2922;11:751. DOI: 10.3390/antiox11040751
Lytvyn S, Vazhnichaya E, Kurapov Y, Semaka O, Lutsenko R, Bobrova N, et al. Biomarkers of oxidative stress in acute blood loss and its correction with magnetite nanoparticles in a sodium chloride matrix. Nano Struct Nano Objects. 2023;35:100998. DOI: 10.1016/j.nanoso.2023.100998
Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary А, et al. Health concerns of various nanoparticles: a review of their in vitro and in vivo toxicity. Nanomaterials. 2018;8(9):634. DOI: 10.3390/nano8090634
Gorobets O, Gorobets S, Sharai I, Polyakova T, Zablotskii V. Interaction of magnetic fields with biogenic magnetic nanoparticles on cell membranes: Physiological consequences for organisms in health and disease. Bioelectrochemistry 2023;151:108390. DOI: 10.1016/j.bioelechem.2023.108390
Liu N, Tang M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J Appl Toxicol. 2020;40(1):16-36. DOI: 10.1002/jat.3817
Malekshah RE, Fahimirad B, Aallaei M, Khaleghian A. Synthesis and toxicity assessment of Fe3O4 NPs grafted by ∼ NH2-Schiff base as anticancer drug: modeling and proposed molecular mechanism through docking and molecular dynamic simulation. Drug Deliv. 2020;27(1):1201-17. DOI: 10.1080/10717544.2020.1801890
El-Nekeety AA, Hassan ME, Hassan RR, Elshafey OI, Hamza ZK, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Nanoencapsulation of basil essential oil alleviates the oxidative stress, genotoxicity and DNA damage in rats exposed to biosynthesized iron nanoparticles. Heliyon. 2021;7(7):e07537. DOI: 10.1016/j.heliyon.2021.e07537
Dora MF, Taha NM, Lebda MA, Hashem AE, Elfeky MS, El-Sayed YS, et al. Quercetin attenuates brain oxidative alterations induced by iron oxide nanoparticles in rats. Int J Mol Sci. 2021;22(8):3829. DOI: 10.3390/ijms22083829
Manuja A, Kumar B, Kumar R, et al. Metal/metal oxide nanoparticles: Toxicity concerns associated with their physical state and remediation for biomedical applications. Toxicol Rep. 2021;8:1970-8. DOI: 10.1016/j.toxrep.2021.11.020
Su C. Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature. J Hazard Mater. 2017;322(Pt A):48-84. DOI: 10.1016/j.jhazmat.2016.06.060
Lu CH, Hsiao JK. Diagnostic and therapeutic roles of iron oxide nanoparticles in biomedicine. Tzu Chi Med J. 2022;35(1):11-7. DOI: 10.4103/tcmj.tcmj_65_22
Koksharov YA, Gubin SP, Taranov IV, Khomutov GB, Gulyaev YV. Magnetic nanoparticles in medicine: progress, problems, and advances. J Commun Technol Electron. 2022;67:101-16. DOI: 10.1134/S1064226922020073
Nacev A, Weinberg IN, Stepanov PY, Kupfer S, Mair LO, Urdaneta MG, et al. Dynamic inversion enables external magnets to concentrate ferromagnetic rods to a central target. Nano Lett. 2015;15(1):359-64. DOI: 10.1021/nl503654t
Hoshiar AK, Le TA, Amin FU, Kim MO, Yoon J Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels. J Magn Magn Mater. 2017;427:181-7. DOI: 10.1016/j.jmmm.2016.11.016
Grassi-Schultheiss PP, Heller F, Dobson J. Analysis of magnetic material in the human heart, spleen and liver. BioMetals. 1997;10(4):351-5. DOI: 10.1023/A:1018340920329
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 The Author(s)
This work is licensed under a Creative Commons Attribution 4.0 International License.
The ownership of copyright remains with the Authors.
Authors may use their own material in other publications provided that the Journal is acknowledged as the original place of publication and National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” as the Publisher.
Authors are reminded that it is their responsibility to comply with copyright laws. It is essential to ensure that no part of the text or illustrations have appeared or are due to appear in other publications, without prior permission from the copyright holder.
IBB articles are published under Creative Commons licence:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.