Disturbed Cytokine Profile in Adjuvant Arthritis – A Target of the Therapeutic Potential of Dendritic Cells Derived From Cryopreserved Precursors

Authors

DOI:

https://doi.org/10.20535/ibb.2023.7.3.285432

Keywords:

adjuvant arthritis, cytokines, bone marrow mononuclear cells, cryopreservation, tolerogenic dendritic cells

Abstract

Background. One of the primary causes of rheumatoid arthritis development is the disruption of the immune system's natural tolerance to its own antigens, leading to an imbalance in the body's cytokine profile. A promising method of correcting such a condition is restoring antigen-specific tolerance, in the formation of which tolerogenic dendritic cells (tolDCs) take part.

Objective. Experimental substantiation of the possibility of correcting the cytokine profile of animals with adjuvant arthritis (AA) by using tolDCs from cryopreserved bone marrow precursors.

Methods. The study was carried out on the CBA/H mice. The development of AA was assessed using a clinical indicator – the arthritis index. The levels of pro- (TNF-a, IL-6, IFN-g) and anti-inflammatory (IL-10, IL-4) cytokines in the blood serum of AA-afflicted animals were measured before and after administration of tolDCs. These tolDCs were obtained from native (NatDCs) or cryopreserved (CryoDCs) using different methods bone marrow mononuclear cells (MNCs). On the 14th day after inducing AA, the animals received intravenous injections of tolDCs (5´105/mouse). One week later, the cytokine levels in the animals' blood serum and the arthritis index were assessed.

Results. Throughout the development of AA, a unidirectional increase in TNF-α and IL-6 levels and a reduction in the content of anti-inflammatory cytokines were observed, which was accompanied by joint swelling in the animals. CryoDCs exhibited a more pronounced corrective effect on both pro- and anti-inflammatory cytokines compared to NatDCs, as evidenced by a decrease in the arthritis index, a clinical manifestation of the pathology.

Conclusions. The possibility of correcting the disturbed cytokine profile and the clinical state of animals during the development of AA through the use of tolDCs derived from cryopreserved MNCs has been proven. Specific cryopreservation conditions for MNCs have been developed, which facilitate the generation of tolDCs from them with a greater capacity, compared to derivatives of native MNCs, to correct the cytokine profile and clinical status of animals with AA.

References

Abbasi M, Mousavi MJ, Jamalzehi S, Alimohammadi R, Bezvan MH, Mohammadi H, Aslani S. Strategies toward rheuma-toid arthritis therapy; the old and the new. J Cell Physiol. 2019;234(7):10018-31. DOI: 10.1002/jcp.27860

George G, Shyni GL, Raghu KG. Current and novel therapeutic targets in the treatment of rheumatoid arthritis. Infam-mopharmacology. 2020;28:1457-76. DOI: 10.1007/s10787-020-00757-9

Kondo N, Kuroda T, Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int J Mol Sci. 2021;22(20):10922. DOI: 10.3390/ijms222010922

McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017; 389(10086):2328-37. DOI: 10.1016/S0140-6736(17)31472-1

Song H, Fang F, Tomasson G, Arnberg FK, Mataix-Cols D, Fernández de la Cruz L, et al. Association of stress-related disorders with subsequent autoimmune disease. JAMA. 2018;319(23):2388-400. DOI: 10.1001/jama.2018.7028

Kessler RC, Aguilar-Gaxiola S, Alonso J, Benjet C, Bromet EJ, Cardoso G, et al. Trauma and PTSD in the WHO world mental health surveys. Eur J Psychotraumatol. 2017;8(sup5):1353383. DOI: 10.1080/20008198.2017.1353383

Clavel C, Nogueira L, Laurent L, Iobagiu C, Vincent C, Sebbag M, Serre G. Induction of macrophage secretion of tumor necrosis factor through Fc receptor IIa engagement by rheumatoid arthritis–specific autoantibodies to citrullinated pro-teins complexed with fibrinogen. Arthritis Rheum. 2018;58:678-88. DOI: 10.1002/art.23284

Yokoyama Y, Iwasaki T, Kitano S, Satake A, Nomura S, Furukawa T, et al. IL-2-Anti-IL-2 Mono-clonal antibody immune complexes inhibit collagen induced arthritis by augmenting regulatory T cell functions. J Immunol. 2018;201(7):1899-906. DOI: 10.4049/jimmunol.1701502

Huang J, Fu X, Chen X, Li Zh, Huang Yu, Liang Ch. Promising therapeutic targets for treatment of rheumatoid arthritis. Front Immunol. 2021;12:686155. DOI: 10.3389/fimmu.2021.686155

Liu X, Jones GW, Choy EH, Jones SA. The biology behind interleukin-6 targeted interventions. Curr Opin Rheumatol. 2016;28(2):152-60. DOI: 10.1097/BOR.0000000000000255

Goltsev AM, Lutsenko OD, Yampolska KY, Gaevska YO, Bondarovych MO, Ostankova LV, et al. Correction of сytokine profile in autoimmune diseases with cryopreserved embryofetoplacental complex products. Probl Cryobiol Cryomed 2022;32(2):121-33. DOI: 10.15407/cryo32.02.121

Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol. 2018;19(7):665-73. DOI: 10.1038/s41590-018-0120-4

Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, et al. Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer. 2018 Nov 26;17(1):168. DOI: 10.1186/s12943-018-0913-y

Shmerling RH. Autoimmune disease and stress: Is there a link? [Internet] Harvard Health Publishing; 2020 [cited 2023 Jul 25]. Available from: https://www.health.harvard.edu/blog/autoimmune-disease-and-stress-is-there-a-link-2018071114230

Paradowska-Gorycka A, Wajda A, Romanowska-Prochnicka K, Walczuk E, Kuca-Warnawin E, Kmiolek T, et al. Th17/Treg-related transcriptional factor expression and cytokine profile in patients with rheumatoid arthritis. Front Immunol. 2020;11:572858. DOI: 10.3389/fimmu.2020.572858

Vvedenskiy D, Volkova N, Babenko N, Gaevska Y, Yukhta M, Goltsev AM. Role of cryopreserved multipotent mesen-chymal stromal cells in modulation of some indices of cell immunity in adjuvant arthritis. Reumatology. 2022;60(3):213-19. DOI: 10.5114/reum.2022.117842

Kysielova H, Yampolska K, Dubrava T, Lutsenko O, Bondarovych M, Babenko N, et al. Improvement of bone marrow mononuclear cells cryopreservation methods to increase the efficiency of dendritic cell production. Cryobiology. 2022;106:122-30. DOI: 10.1016/j.cryobiol.2022.02.004

Consonni FM, Porta C, Marino A, Pandolfo C, Mola S, Bleve A, et al. Myeloid-derived suppressor cells: ductile targets in disease. Front Immunol. 2019 May 3;10:949. DOI: 10.3389/fimmu.2019.00949

Cauwels A, Tavernier J. Tolerizing strategies for the treatment of autoimmune diseases: from ex vivo to in vivo strate-gies. Front Immunol. 2020;11:674. DOI: 10.3389/fimmu.2020.00674

Goltsev AM, Yampolska KY, Kisielova HG, Оstankov MV, Dubrava TG, Babenko NМ, et al. Cryopreservation as biotech-nological application of dendritic cells in clinical practice. Problems Cryobiol Cryomed. 2021;31(4):289-303. DOI: 10.15407/cryo31.04.289

Usero L, Miralles L, Esteban I, Pastor-Quiñones C, Maleno MJ, Leal L, et al. Feasibility of using monocyte-derived den-dritic cells obtained from cryopreserved cells for DC-based vaccines. J Immunol Methods. 2021;498:113133. DOI: 10.1016/j.jim.2021.113133

Goltsev AN, Dubrava TG, Yampolskaya EE, Gayevskaya YA, Babenko NN, Bondarovich NA, et al. Optimization of the method of obtaining immature dendritic cells for therapeutic use. Physiol J. 2018;64(5):33-40. DOI: 10.22494/cot.v7i2.99

Kamyshnikov VS. Reference book on clinical and biochemical research and laboratory diagnostics. MEDpress-inform; 2000. p. 64-6.

Novikov AA, Aleksandrova EN, Diatroptova MA, Nasonov EL. Role of cytokines in the pathogenesis of rheumatoid ar-thritis. Rheumatol Sci Pract. 2010;48(2):71-82. DOI: 10.14412/1995-4484-2010-1420

Brennan FM, McInnes IB. Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest. 2008;118(11):3537-45. DOI: 10.1172/JCI36389

Wang S, Zhou Y, Huang J, Li H, Pang H, Niu D, et al. Advances in experimental models of rheumatoid arthritis. Eur J Immunol. 2023 Jan;53(1):e2249962. DOI: 10.1002/eji.202249962

Donaldson LF, Seckl JR, McQuenn DS. A discrete adjuvant-induced monoarthritis in the rat: effects of adjuvant dose. J Neurosci Methods. 1993;49(1-2):5-10. DOI: 10.1016/0165-0270(93) 90103-x

Schurgers E, Billiau A, Matthys P. Collagen-induced arthritis as an animal model for rheumatoid arthritis: focus on inter-feron-gamma. J Interferon Cytokine Res. 2011;(12):917-26. DOI: 10.1089/jir.2011.0056

Izquierdo E, Cañete JD, Celis R, Del Rey MJ, Usategui A, Marsal S, et al. Synovial fibroblast hyperplasia in rheumatoid arthritis: clinicopathologic correlations and partial reversal by anti-tumor necrosis factor therapy. Arthritis Rheum. 2011;63(9):2575-83. DOI: 10.1002/art.30433

Markovics A, Rosenthal KS, Mikecz K, Carambula RE, Ciemielewski JC, Zimmerman DH. Restoring the balance between pro-inflammatory and anti-inflammatory cytokines in the treatment of rheumatoid arthritis: new insights from animal models. Biomedicines. 2021;10(1):44. DOI: 10.3390/biomedicines10010044

Alunno A, Carubbi F, Giacomelli R, Gerli1 R. Cytokines in the pathogenesis of rheumatoid arthritis: new players and therapeutic targets BMC. Rheumatol. 2017;1:3. DOI: 10.1186/s41927-017-0001-8

Yoshida Y, Tanaka T. Interleukin 6 and rheumatoid arthritis. Biomed Res Int. 2014;2014:698313. DOI: 10.1155/2014/698313

Somaiya M, Shagufta M, Sumayya S, Qayyum KA. Level of inflammatory cytokines in rheumatoid arthritis patients: Corre-lation with 25-hydroxy vitamin D and reactive oxygen species. PLoS One. 2017;12(6):e0178879. DOI: 10.1371/journal.pone.0178879

Lee SH, Kwon JY, Kim S-Y, Jung KA, Cho M-L. Interferon-gamma regulates infammatory cell death by targeting necro-ptosis in experimental autoimmune arthritis. Sci Rep. 2017;7(1):10133. DOI: 10.1038/s41598-017-09767-0.

Cauwels A, Tavernier J. Tolerizing strategies for the treatment of autoimmune diseases: from ex vivo to in vivo strategies. Front Immunol. 2020;11:674. DOI: 10.3389/fimmu.2020.00674/full

Benham H, Nel HJ, Law SC, Mehdi AM, Street S, Romnorulh N, et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci Transl Med. 2015;7(290):290ra87. DOI: 10.1126/scitranslmed.aaa9301

Bell GM, Anderson AE, Diboll J, et al. Autologous tolerogenic dendritic cells for rheumatoid and inflammatory arthritis. Ann Rheum Dis. 2017;76(1):227-34. DOI: 10.1136/annrheumdis-2015208456

Goltsev AM, Kisielova HH. Justification of therapeutic efficacy of dendritic cells derived from cryopreserved precursors in an adjuvant arthritis model. World Med Biol. 2023;2(84):197-202. DOI: 10.26724/2079-8334-2023-2-84-197-202

Park JE, Jang J, Choi JH, Kang MS, Woo YJ, Seong YR, et al. DC-based immunotherapy combined with low-dose methotrexate effective in the treatment of advanced CIA in mice. J Immunol Res. 2015;2015:834085. DOI: 10.1155/2015/834085

Yang Yi, He Xiao, Zhao R, Guo W, Zhu M, Xing W, et al. Serum IFN-γ levels predict the therapeutic effect of mesenchymal stem cell transplantation in active rheumatoid arthritis. J Transl Med. 2018;16:165. DOI: 10.1186/s12967-018-1541-4

Published

2023-09-21

How to Cite

1.
Kisielova H, Dubrava T, Goltsev A. Disturbed Cytokine Profile in Adjuvant Arthritis – A Target of the Therapeutic Potential of Dendritic Cells Derived From Cryopreserved Precursors. Innov Biosyst Bioeng [Internet]. 2023Sep.21 [cited 2024May20];7(3):32-43. Available from: http://ibb.kpi.ua/article/view/285432

Issue

Section

Articles