Biological Evaluation of Medical Devices in the Form of Suppositories for Rectal and Vaginal Use




medical devices, rectal suppositories, vaginal suppositories, antibacterial suppositories, cytotoxicity, sensitizing effects, irritating effects


Background. Programs of preclinical safety studies of the health care products depend on the regulatory status of the investigated products. The classification of such products, in particular suppositories for rectal and vaginal use, is a critical step of developing tactics for their biological evaluation. Adaptation of biological evaluation methods for the medical devices based on the combination of biologically active substances, as well as evaluation of the results of such studies is urgent task of biomedicine.

Objective. To substantiate the regulatory status and to carry out a biological evaluation of medical devices in the form of vaginal suppositories based on octenidine dihydrochloride ("Prodexyn") and in the form of rectal suppositories based on Saw palmetto, Levisticum officinale and Calendula officinalis extracts ("Pravenor").

Methods. Biological evaluation was conducted according to the requirements of ISO 10993 standards using in vitro and in vivo biological test systems (cytotoxicity in cell culture and the MTT test, sensitizing and irritating effect in guinea pigs).

Results. The cytotoxicity (СС50) of the medical device "Prodexyn" extract in Vero cell culture was 8.35 μg/ml calculated as octenidine dihydrochloride and 416.65 μg/ml calculated as dexpanthenol. "Pravenor" medical device was found to be non-toxic in Vero cell culture. According to the results of MMT assay CC50 for octenidine dihydrochloride was 1.67 μg/ml, and 83.33 μg/ml – for dexpanthenol. CC50 indicators calculated for the different active ingredients of the medical device "Pravenor" were the following: 50 mg/ml for the dwarf palm berries extract (Saw palmetto), 16.67 mg/ml for the lovage roots extract (Levisticum officinale), and 16.67 mg/ml for the calendula flowers extract (Calendula officinalis). No sensitizing or skin irritating effects were observed in guinea pigs.

Conclusions. Biological evaluation of medical devices in the form of rectal suppositories "Pravenor" and vaginal suppositories "Prodexyn" performed using in vitro and in vivo biological systems. It was demonstrated an acceptable level of safety of the products. The MTT test was 5 times more sensitive than the Vero cell culture method in determination of cytotoxicity.


Tretiakova A.M. The role and place of medical technologies in modern healthcare systems. Med Technol Assess Choice. 2011;4:48-52.

Peter L, Hajek L, Maresova P, Augustynek M, Penhaker M. Medical devices: regulation, risk classification, and open innovation. J Open Innov Technol Market Complex. 2020;6(2):42. DOI: 10.3390/joitmc6020042

Green J. Medical device legislation for custom-made devices after the UK has left the EU: answers to ten important ques-tions. Br Dent J. 2021 Oct;231(8):513-521. DOI: 10.1038/s41415-021-3530-x

Onkar B, Krishan P, Singh G. Regulatory requirements for medical devices: an insight. Appl Clin Res Clin Trials Regul Affairs. 2017;4(1). DOI: 10.2174/2213476X03666160804153513

Parvizi N, Woods K. Regulation of medicines and medical devices: contrasts and similarities. Clin Med (Lond). 2014 Feb;14(1):6-12. DOI: 10.7861/clinmedicine.14-1-6

Godlee F. Why aren't medical devices regulated like drugs? BMJ. 2018;363:k5032. DOI: 10.1136/bmj.k5032

Kramer DB, Tan YT, Sato C, Kesselheim AS. Ensuring medical device effectiveness and safety: a cross-national comparison of approaches to regulation. Food Drug Law J. 2014;69(1):1-i.

Miclăuş T, Valla V, Koukoura A, Nielsen AA, Dahlerup B, Tsianos GI, et al. Impact of design on medical device safety. Ther Innov Regul Sci. 2020 Jul;54(4):839-49. DOI: 10.1007/s43441-019-00022-4

Palojoki S, Saranto K, Lehtonen L. Reporting medical device safety incidents to regulatory authorities: An analysis and classification of technology-induced errors. Health Informatics J. 2017 Sep;25(3):731-40. DOI: 10.1177/1460458217720400

Geavlete P, Multescu R, Geavlete B. Serenoa repens extract in the treatment of benign prostatic hyperplasia. Ther Adv Urol. 2011;3(4):193-8. DOI: 10.1177/1756287211418725

Spréa RM, Fernandes Â, Finimundy TC, Pereira C, Alves MJ, Calhelha RC, et al. Lovage (Levisticum officinale W.D.J. Koch) roots: a source of bioactive compounds towards a circular economy. Resources. 2020;9(7):81. DOI: 10.3390/resources9070081

Ashwlayan VD, Kumar A, Verma M, Garg VK, Gupta SK. Therapeutic potential of Calendula officinalis. Pharm Pharmacol Int J. 2018;6(2):149-55. DOI: 10.15406/ppij.2018.06.00171

Stahl J, Braun M, Siebert J, Kietzmann M. The effect of a combination of 0.1% octenidine dihydrochloride and 2% 2-phenoxyethanol (octenisept) on wound healing in pigs in vivo and its in vitro percutaneous permeation through intact and barrier disrupted porcine skin. Int Wound J. 2010 Feb;7(1):62-9. DOI: 10.1111/j.1742-481X.2009.00648.x

Stahl J, Braun M, Siebert J, Kietzmann M. The percutaneous permeation of a combination of 0.1% octenidine dihydro-chloride and 2% 2-phenoxyethanol (octenisept®) through skin of different species in vitro. BMC Vet Res. 2011 Aug 11;7(1):44. DOI: 10.1186/1746-6148-7-44

Proksch E, de Bony R, Trapp S, Boudon S. Topical use of dexpanthenol: a 70th anniversary article. J Dermatolog Treat. 2017 Dec;28(8):766-773. DOI: 10.1080/09546634.2017.1325310

Gorski J, Proksch E, Baron JM, Schmid D, Zhang L. Dexpanthenol in wound healing after medical and cosmetic interventions (postprocedure wound healing). Pharmaceuticals (Basel). 2020 Jun 29;13(7):138. DOI: 10.3390/ph13070138

Stern AD. Innovation under regulatory uncertainty: evidence from medical technology. J Public Econ. 2017 Jan;145:181-200. DOI: 10.1016/j.jpubeco.2016.11.010

Kramer DB, Xu S, Kesselheim AS. How does medical device regulation perform in the united states and the european union? A systematic review. PLoS Med. 2012;9(7):e1001276. DOI: 10.1371/journal.pmed.1001276

Van Norman GA. Drugs and devices: comparison of European and U.S. Approval processes. JACC Basic Transl Sci. 2016 Aug 29;1(5):399-412. DOI: 10.1016/j.jacbts.2016.06.003

Van Norman GA. Drugs, devices, and the FDA: Part 1: An overview of approval processes for drugs. JACC Basic Transl Sci. 2016 Apr 25;1(3):170-9. DOI: 10.1016/j.jacbts.2016.03.002

Van Norman GA. Drugs, devices, and the FDA: Part 2: An overview of approval processes: FDA approval of medical devices. JACC Basic Transl Sci. 2016 Jun 27;1(4):277-87. DOI: 10.1016/j.jacbts.2016.03.009

Tian J, Song X, Wang Y, Cheng M, Lu S, Xu W, et al. Regulatory perspectives of combination products. Bioact Mater. 2022 Sep 7;10:492-503. DOI: 10.1016/j.bioactmat.2021.09.002

Contardi M. Changes in the medical device's regulatory framework and its impact on the medical device's industry: from the medical device directives to the medical device regulations. Erasmus Law Rev. 2019;12(2):166-77. DOI: 10.5553/ELR.000139

Di Pierro F, Di Paola G, Risso P. Role of a medical device for intra-vaginal use in improving the quality of the colposcopic examination and the anatomical/pathological reading of the cytological test and biopsy. Acta Biomed. 2014 Aug 20;85(2):121-6.

Plummer EL, Bradshaw CS, Doyle M, Fairley CK, Murray GL, Bateson D, et al. Lactic acid-containing products for bacterial vaginosis and their impact on the vaginal microbiota: A systematic review. PLoS One. 2021 Feb 11;16(2):e0246953. DOI: 10.1371/journal.pone.0246953

Papa R, Troncone M, Altruda F, Rullo V, Saponati G. Clinical evaluation of the efficacy and safety of a medical vaginal device containing rigenase® for the treatment of vaginosis: a randomized study. J Clin Gynecol Obstetr. 2017;6(1):6-11. DOI: 10.14740/jcgo424w

Montanino Oliva M, Poverini R, Lisi R, Carra MC, Lisi F. Treating woman with myo-inositol vaginal suppositories improves partner's sperm motility and fertility. Int J Endocrinol. 2016;2016:7621942. DOI: 10.1155/2016/7621942

Ham AS, Buckheit RW Jr. Designing and developing suppository formulations for anti-HIV drug delivery. Ther Deliv. 2017;8(9):805-17. DOI: 10.4155/tde-2017-0056

Sibona M, Destefanis P, Agnello M, Lillaz B, Giuliano M, Cai T, et al. The association of Boswellia resin extract and propolis derived polyphenols can improve quality of life in patients affected by prostatitis-like symptoms. Arch Ital Urol Androl. 2020 Jan 14;91(4):251-5. DOI: 10.4081/aiua.2019.4.251

Montrone S, Gonnelli A, Cantarella M, Sainato A. Use of Proktis-M suppositories in patients undergoing neoadjuvant radiochemotherapy for adenocarcinoma of the rectum. Minerva Gastroenterol Dietol. 2015;61(4):293-7.

Maresova P, Rezny L, Peter L, Hajek L and Lefley F. Do regulatory changes seriously affect the medical devices industry? Evidence from the Czech Republic. Front Public Health. 2021 Apr;9:666453. DOI: 10.3389/fpubh.2021.666453

Jenull S, Hojdar K, Laggner H, Velimirov B, Zemann N, Huettinger M. Cell growth and migration under octenidine-antiseptic treatment. J Wound Care. 2015;24(6):280-8. DOI: 10.12968/jowc.2015.24.6.280

Schmidt J, Zyba V, Jung K, Rinke S, Haak R, Mausberg RF, et al. Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells - an in vitro study. Drug Chem Toxicol. 2016;39(3):322-30. DOI: 10.3109/01480545.2015.1121274

Proksch E, Berardesca E, Misery L, Engblom J, Bouwstra J. Dry skin management: practical approach in light of latest research on skin structure and function. J Dermatolog Treat. 2020 Nov;31(7):716-22. DOI: 10.1080/09546634.2019.1607024

Klöcker N, Rudolph P, Verse T. Evaluation of protective and therapeutic effects of dexpanthenol on nasal decongestants and preservatives: results of cytotoxic studies in vitro. Am J Rhinol. 2004;18(5):315-20.

Klöcker N, Verse T, Rudolph P. The protective effect of dexpanthenol in nasal sprays. First results of cytotoxic and ciliary-toxic studies in vitro. Laryngorhinootologie. 2003;82(3):177-82. DOI: 10.1055/s-2003-38406

Iguchi K, Okumura N, Usui S, Sajiki H, Hirota K, Hirano K. Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells. Prostate. 2001;47(1):59-65. DOI: 10.1002/pros.1047

Shimada H, Tyler VE, McLaughlin JL. Biologically active acylglycerides from the berries of saw-palmetto (Serenoa repens). J Nat Prod. 1997;60(4):417-8. DOI: 10.1021/np960552o

Sertel S, Eichhorn T, Plinkert PK, Efferth T. Chemical composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells. Anticancer Res. 2011;31(1):185-91.

Sargazi S, Saravani R, Galavi H, Mollashahee-Kohkan F. Effect of Levisticum officinale hydroalcoholic extract on DU-145 and PC-3 prostate cancer cell lines, gene cell tissue. 2017; 4(4):e66094. DOI: 10.5812/gct.66094

Cruceriu D, Diaconeasa Z, Socaci S, Socaciu C, Rakosy-Tican E, Balacescu O. Biochemical profile, selective cytotoxicity and molecular effects of Calendula officinalis extracts on breast cancer cell lines. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2020;48(1):24-39. DOI: 10.15835/nbha48111778

Jiménez-Medina E, Garcia-Lora A, Paco L, Algarra I, Collado A, Garrido F. A new extract of the plant calendula officinalis produces a dual in vitroeffect: cytotoxic anti-tumor activity and lymphocyte activation. BMC Cancer. 2006 May 5;6(1):119. DOI: 10.1186/1471-2407-6-119




How to Cite

Dmytrenko O, Arkhypova M, Starosyla D, Rybalko S, Gevorkyan M, Galkin A. Biological Evaluation of Medical Devices in the Form of Suppositories for Rectal and Vaginal Use. Innov Biosyst Bioeng [Internet]. 2021Dec.26 [cited 2024Apr.15];5(4):228-37. Available from: