Factors Influencing the Manifestation of Toxicity and Danger of Nanomaterials

Authors

  • Nataliia Leonenko State Institution "Kundiiev Institute of Occupational Health of the National Academy of Medicals Sciences of Ukraine", Ukraine
  • Olga Leonenko State Institution "Kundiiev Institute of Occupational Health of the National Academy of Medicals Sciences of Ukraine", Ukraine

DOI:

https://doi.org/10.20535/ibb.2020.4.2.192810

Keywords:

Nanomaterials, Nanoparticles, Toxic effect, Danger

Abstract

Background. The development of new technologies of the directed synthesis and use of nanoparticles and nanomaterials with properties that are radically different from those of traditional materials, related to peculiarities of their dimensions and to the combination and variability range of physicochemical properties, parameters, characteristics of nanoparticles and their coating surface, procedures and manipulations when conducting studies, can result in development of quite different effects and risks.

Objective. The purpose of the paper is analysis of the significance of dimensional and structural factors, and their combinations in the manifestation of toxicity and danger of nanomaterials based on published data.

Methods. Analysis and systematization of scientific data on the assessment of manifestations of toxicity and hazard of nanomaterials over the past 20 years.

Results. The transition of substances to the nanoscale state makes them chemically more active – the smaller the size of the nanoparticles, the stronger the effect they show in comparison with equivalent amounts of this substance in a traditional macro form. On contact with the biological environment, their surface is covered with proteins. When entering the body, they may undergo agglomeration, dissociation, or modification. Procedures and manipulations in the research can also affect the properties and, consequently, the toxicity of nanoparticles. Most nanoparticles are unstable in dispersion, prone to aggregation and sedimentation, which significantly affects the process of absorption of nanoparticles and their toxicity.

Conclusions. The toxicity and danger of nanoparticles and nanomaterials depend on many factors and their combinations. The complexity of assessing the impact of nanostructures is determined by the range of variability of properties, chemical, geometric, physico-chemical properties and characteristics, size, surface of nanoparticles. The improvement and development of new approaches to identifying the danger of nanoscale objects is a promising direction of scientific investigations.

References

Goldyreva TP. Biomedical foundations of life safety. Part 2: For students' laboratory work. Perm: Prokrost; 2014, 155 p.

Demin VF, Belushkina NN, Paltsev MA. Risk of exposure to nano- and nanobiomaterials on human health: assessment methods and practical application. Molecular Medicine. 2012;(4):7-17.

Bulanov EN. Obtaining and research of nanostructured biocompatible materials based on hydroxyapatite. Nizhny Novgorod: N. I. Lobachevsky Nizhny Novgorod State University; 2012, 103 p.

Smirnov VI. Physical foundations of nanotechnology and nanomaterials. Ulyanovsk: UlGTU; 2017, 240 p.

Shatorna VF. Nanotechnology, nanomedicine, nanobiology – a look at the problem. Herald of Problems of Biology and Medicine. 2013;2(1):40-4.

Roduner E. World of materials and technologies. Size effects in nanomaterials. Moscow: Tekhnosfera; 2010, 352 p.

Chang X-L, Yang S-T, Xing G. Molecular Toxicity of Nanomaterials. Journal of Biomedical Nanotechnology. 2014;10(10):2828-51. DOI: 10.1166/jbn.2014.1936

Syrma OI. Physical properties of nanoparticles and their biological effects. Integrative Anthropology. 2013;(1(21):30-3.

Kutsan AT, Romanko ME, Orobchenko AL. Safety and toxicity assessment of metal nanoparticles as prototypes of veterinary nanonutriceutics, according to the definition of systemic biomarkers in in vitro and in vivo experiments. In: Materiály VIII Mezi­národní vědecko-praktická konference "Moderní vymoženosti vědy - 2012". Díl 22. Biologické vědy. Zvěrolékařství. Praha; 2012, pp. 84-7. Available from: http://www.rusnauka.com/4_SND_2012/Veterenaria/1_100160.doc.htm

Rusanov AI. The wonderful world of nanostructures. Journal of General Chemistry. 2002;72(4):532-49.

Pavlyho T, Serdyuk G, Pavlyho I. Danger nanomaterials and standardized methods of its evaluation. Scientific Notes. 2015;(49):114-8.

Polenov YV, Lukin MV, Egorova EV. Physico-chemical foundations of nanotechnology. Ivanovo: Ivanovo State University of Chemistry and Technology; 2013, 196 p.

Kazak AA, Stepanov EG, Gmoshinsky IV, Khotimchenko SA. Comparative analysis of modern approaches to assessing the risks created by artificial nanoparticles and nanomaterials (including in food products and cosmetics). Questions of Nutrition. 2012;81(4):11-7.

Hejazy M, Koohi MK, Bassiri Mohamad Pour A, Najafi D. Toxicity of manufactured copper nanoparticles – A review. Nanomedicine Research Journal, 2018;3(1):1-9. DOI: 10.22034/nmrj.2018.01.001

Deryabina TD. The toxicity of ions, nano- and microparticles of copper in biotests of various levels of organization. Microelements in Medicine. 2013;14(2):47-9.

Akafyeva TI, Zvezdin VN. Toxicological and hygienic assessment of potential hazard to human health of nanodispersed silicon dioxide solution. Bulletin of Perm University. Series: Biology. 2012;(2):71-4.

Latyshevskaya NI, Strekalova AS. Ecological and hygienic problems of the nanotechnological process. Hygiene and Sanitation. 2012;(5):8-11.

Seĭfulla RD, Kim EK. [Problems of toxicity of nanopharmacological preparations]. Experimental and Clinical Pharmacology. 2013;76(2):43-8.

Zhu M-T, Feng W-Y, Wang B, Wang T-C, Gu Y-Q, Wang M, et al. Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology. 2008;247(2-3):102-11. DOI: 10.1016/j.tox.2008.02.011

Katsnelson BA, Privalova LI, Kuzmin SV, et al. Experimental data for assessing of pulmonotoxicity and resorptive toxicity of magnetite particles (Fe3O4) in the nano- and micrometer range. Toxicological Review. 2010;(2):18-25.

Katsnelson B, Privalova L, Sutunkova M, Gurvich V, Loginova N, Minigalieva I, et al. Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview). International Journal of Nanomedicine. 2015;10:3013-29. DOI: 10.2147/IJN.S80843

Lewinski N, Colvin V, Drezek R. Cytotoxicity of Nanoparticles. Small. 2008;4(1):26-49. DOI: 10.1002/smll.200700595

Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. Toxicity of silver nanoparticles – Nanoparticle or silver ion? Toxicology Letters. 2012;208(3):286-92. DOI: 10.1016/j.toxlet.2011.11.002

Kushnina DA. The study of the toxicity of nano- and microparticles of copper on a culture of human fibroblasts. Fundamental and Applied Research: Problems and Results. 2015;(21):7-11.

Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspectives. 2005;113(7):823-39. DOI: 10.1289/ehp.7339

Prodanchuk NG, Balan GM. Titanium dioxide nanoparticles and their potential risks to health and the environment. Modern Problems of Toxicology. 2011;(4):11-27.

Wang J, Fan Y. Lung Injury Induced by TiO2 Nanoparticles Depends on Their Structural Features: Size, Shape, Crystal Phases, and Surface Coating. International Journal of Molecular Sciences. 2014;15(12):22258-78. DOI: 10.3390/ijms151222258

Napierska D, Thomassen LCJ, Lison D, Martens JA, Hoet PH. The nanosilica hazard: another variable entity. Particle and Fibre Toxicology. 2010;7(1):39. DOI: 10.1186/1743-8977-7-39

Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, et al. Cytotoxicity of Carbon Nanomaterials: Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene. Environmental Science & Technology. 2005;39(5):1378-83. DOI: 10.1021/es048729l

Zaitseva NV, Zemlianova MA, Zvezdin NN, Dovbysh AA. Toxicological and hygiene characterization of some metal-containing nanoparticles at various exposition methods: bioaccumulation and morphofunctional exposure features. Toxicological Review. 2017;142(1):27-34. DOI: 10.36946/0869-7922-2017-1-27-34

Wang B, Feng W-Y, Wang T-C, Jia G, Wang M, Shi J-W, et al. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicology Letters. 2006;161(2):115-23. DOI: 10.1016/j.toxlet.2005.08.007

Lystsov VN, Murzin NV. The nanotechnology security problems. Moscow: MIFI; 2007, 70 p.

Islamov RA, Nersesyan AK. Toxicological and pharmacological aspects of research on nanomaterials and nanocomposites. In: Collection of materials of the International Scientific and Practical Conference dedicated to the 50th anniversary of the Research Institute for Biological Safety Problems, Almaty; 2008, pp. 128-30.

Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters. 2007;168(2):176-85. DOI: 10.1016/j.toxlet.2006.12.001

Ivanisenko VA, Podkolodny NL, Demenkov PS, Ivanisenko TV, Podkolodnaya OA, Ignatieva EV, et al. Extracting knowledge from texts of scientific publications and creating knowledge bases in the field of nanobiotechnology. Russian nanotechnologies. 2011;6(7-8):14-21.

Roy SC, Paulose M, Grimes CA. The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials. 2007;28(31):4667-72. DOI: 10.1016/j.biomaterials.2007.07.045

Krug HF. Nanosafety Research – Are We on the Right Track? Angewandte Chemie International Edition. 2014;53(46):12304-19. DOI: 10.1002/anie.201403367

George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, et al. Surface Defects on Plate-Shaped Silver Nanoparticles Contribute to Its Hazard Potential in a Fish Gill Cell Line and Zebrafish Embryos. ACS Nano. 2012;6(5):3745-59. DOI: 10.1021/nn204671v

Lee JH, Ju JE, Kim BI, Pak PJ, Choi E-K, Lee H-S, Chung N. Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environmental Toxicology and Chemistry. 2014;33(12):2759-66. DOI: 10.1002/etc.2735

Guskova OA, Zavyalov NV, Skvortsova EL. Silver nanoparticles of titanium and zinc. Rewiew of modern toxicological data. Sanitary Doctor. 2014;(6):47-51.

Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJS. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug and Chemical Toxicology. 2014;37(3):336-47. DOI: 10.3109/01480545.2013.866134

Lovrić J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. Journal of Molecular Medicine. 2005;83(5):377-85. DOI: 10.1007/s00109-004-0629-x

Zhang T, Wang Y, Kong L, Xue Y, Tang M. Threshold Dose of Three Types of Quantum Dots (QDs) Induces Oxidative Stress Triggers DNA Damage and Apoptosis in Mouse Fibroblast L929 Cells. International Journal of Environmental Research and Public Health. 2015;12(10):13435-54. DOI: 10.3390/ijerph121013435

Putsillo EV. A systematic approach to assessing the impact of nanotechnology on the health of the nation. In: Proceedings of the ХІІ International Scientific Conference "Modernization of Russia: Key Problems and Solutions"; 2011.

Trineeva OV. Methods of analysis of vitamin E (review). VSU Bulletin, series: Chemistry, Biology, Pharmacy. 2013;(1):212-24.

Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, et al. C60 in Water: Nanocrystal Formation and Microbial Response. Environmental Science & Technology. 2005;39(11):4307-16. DOI: 10.1021/es048099n

Glushkova AV, Radilov AS, Dulov SP. Peculiarities of manifestation of toxicity of nanoparticles (review). Hygiene and Sanitation. 2011;(2):81-5.

Hendrickson OD, Zherdev AV, Gmoshinskii IV, Dzantiev BB. Fullerenes: In vivo studies of biodistribution, toxicity, and biological action. Nanotechnologies in Russia. 2014;9(11-12):601-17. DOI: 10.1134/S199507801406010X

Kalmantaeva OV, Firstova VV, Potapov VD, Zyrina EV, Gerasimov VN, Ganina EA, et al. Silver-nanoparticle exposure on immune system of mice depending on the route of administration. Nanotechnologies in Russia. 2014;9(9-10):571-6. DOI: 10.1134/s1995078014050061

Liu J, Sonshine DA, Shervani S, Hurt RH. Controlled Release of Biologically Active Silver from Nanosilver Surfaces. ACS Nano. 2010;4(11):6903-13. DOI: 10.1021/nn102272

Kim S, Choi JE, Choi J, Chung K-H, Park K, Yi J, Ryu D-Y. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology in Vitro. 2009;23(6):1076-84. DOI: 10.1016/j.tiv.2009.06.001

McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. Journal of Food and Drug Analysis. 2014;22(1):116-27. DOI: 10.1016/j.jfda.2014.01.010

Liu J, Hurt RH. Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids. Environmental Science & Technology. 2010;44(6):2169-75. DOI: 10.1021/es9035557

Foldbjerg R, Irving ES, Hayashi Y, Sutherland DS, Thorsen K, Autrup H, Beer C. Global Gene Expression Profiling of Human Lung Epithelial Cells After Exposure to Nanosilver. Toxicological Sciences. 2012;130(1):145-57. DOI: 10.1093/toxsci/kfs225

Liu J, Wang Z, Liu FD, Kane AB, Hurt RH. Chemical Transformations of Nanosilver in Biological Environments. ACS Nano. 2012;6(11):9887-99. DOI: 10.1021/nn303449n

Kittler S, Greulich C, Diendorf J, Köller M, Epple M. Toxicity of Silver Nanoparticles Increases during Storage Because of Slow Dissolution under Release of Silver Ions. Chemistry of Materials. 2010;22(16):4548-54. DOI: 10.1021/cm100023p

Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H. Cysteine-Induced Modifications of Zero-valent Silver Nanomaterials: Implications for Particle Surface Chemistry, Aggregation, Dissolution, and Silver Speciation. Environmental Science & Technology. 2012;46(13):7037-45. DOI: 10.1021/es3001757

Li Y, Zhou Y, Wang H-Y, Perrett S, Zhao Y, Tang Z, Nie G. Chirality of Glutathione Surface Coating Affects the Cytotoxicity of Quantum Dots. Angewandte Chemie International Edition. 2011;50(26):5860-64. DOI: 10.1002/anie.201008206

Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Science of The Total Environment. 2010;408(5):999-1006. DOI: 10.1016/j.scitotenv.2009.11.003

Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology. 2008;233(3):404-10. DOI: 10.1016/j.taap.2008.09.015

Nymark P, Catalán J, Suhonen S, Järventaus H, Birkedal R, Clausen PA, et al. Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Toxicology. 2013;313(1):38-48. DOI: 10.1016/j.tox.2012.09.014

Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ. Cytotoxicity Induced by Engineered Silver Nanocrystallites Is Dependent on Surface Coatings and Cell Types. Langmuir. 2012;28(5):2727-35. DOI: 10.1021/la2042058

Haase A, Tentschert J, Jungnickel H, Graf P, Mantion A, Draude F, et al. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses. Journal of Physics: Conference Series. 2011;304:012030. DOI: 10.1088/1742-6596/304/1/012030

Crater JS, Carrier RL. Barrier Properties of Gastrointestinal Mucus to Nanoparticle Transport. Macromolecular Bioscience. 2010;10(12):1473-83. DOI: 10.1002/mabi.201000137

Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN. Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface Coating in Caenorhabditis elegans. Environmental Science & Technology. 2012;46(2):1119-27. DOI: 10.1021/es202417t

Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology. 2012;7(12):779-86. DOI: 10.1038/nnano.2012.207

Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA. Physical-Chemical Aspects of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. Journal of the American Chemical Society. 2011;133(8):2525-34. DOI: 10.1021/ja107583h

Ashkarran AK, Ghavami M, Aghaverdi H, Stroeve P, Mahmoudi M. Bacterial Effects and Protein Corona Evaluations: Crucial Ignored Factors in the Prediction of Bio-Efficacy of Various Forms of Silver Nanoparticles. Chemical Research in Toxicology. 2012;25(6):1231-42. DOI: 10.1021/tx300083s

Hansen SF. Exposure pathways of nanomaterials. In: Nanotechnology and human health: Scientific evidence and risk governance. Report of the WHO expert meeting 10-11 December 2012, Bonn, Germany. Copenhagen: WHO Regional Office for Europe; 2013.

Poland C. Nanoparticles: Possible routes of intake. In: Nanotechnology and human health: Scientific evidence and risk governance. Report of the WHO expert meeting 10-11 December 2012, Bonn, Germany. Copenhagen: WHO Regional Office for Europe; 2013.

Howard V. General toxicity of NM. In: Nanotechnology and human health: Scientific evidence and risk governance. Report of the WHO expert meeting 10-11 December 2012, Bonn, Germany. Copenhagen: WHO Regional Office for Europe; 2013.

Vogel U. Pulmonary and reproductive effects of nanoparticles. In: Nanotechnology and human health: Scientific evidence and risk governance. Report of the WHO expert meeting 10-11 December 2012, Bonn, Germany. Copenhagen: WHO Regional Office for Europe; 2013.

Chiaretti M, Mazzanti G, Bosco S, Bellucci S, Cucina A, Le Foche F, et al. Carbon nanotubes toxicology and effects on metabolism and immunological modification in vitro and in vivo. Journal of Physics: Condensed Matter. 2008;20(47):474203. DOI: 10.1088/0953-8984/20/47/474203

Ji JH, Jung JH, Kim SS, Yoon J-U, Park JD, Choi BS, et al. Twenty-Eight-Day Inhalation Toxicity Study of Silver Nanoparticles in Sprague-Dawley Rats. Inhalation Toxicology. 2007;19(10):857-71. DOI: 10.1080/08958370701432108

Shumakova AA, Smirnova VV, Tananova ON, Trushina EN, Kravchenko LV, Aksenov IV, et al. Toxicological and hygienic characteristics of silver nanoparticles introduced into the gastrointestinal tract of rats. Nutrition Issues. 2011;80(6):9-18.

Loft S. Cardiovascular and other systemic effects of nanoparticles. In: Nanotechnology and human health: Scientific evidence and risk governance. Report of the WHO expert meeting 10-11 December 2012, Bonn, Germany. Copenhagen: WHO Regional Office for Europe; 2013.

Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials. 2009;8(7):543-57. DOI: 10.1038/nmat2442

Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences. 2008;105(38):14265-70. DOI: 10.1073/pnas.0805135105

Razum K, Troitski S, Pyshnaya I, Bukhtiyarov V, Ryabchikova E. Macrophages and Epithelial Cells Differently Respond to Palladium Nanoparticles. Micro and Nanosystems. 2014;6(2):133-41. DOI: 10.2174/187640290602141127115839

Pyshnaya IA, Razum KV, Poletaeva JE, Pyshnyi DV, Zenkova MA, Ryabchikova EI. Comparison of Behaviour in Different Liquids and in Cells of Gold Nanorods and Spherical Nanoparticles Modified by Linear Polyethyleneimine and Bovine Serum Albumin. BioMed Research International. 2014;2014:908175. DOI: 10.1155/2014/908175

Arsentieva IP, Baitukalov TA, Glushchenko NN, et al. Certification and application in medicine of magnesium and copper nanoparticles. Materials Science. 2007;(4):54-6.

Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research. 2009;11(1):77-89. DOI: 10.1007/s11051-008-9446-4

Elder А, Yang H, Gwiazda R, Teng X, Thurston S, He H, Oberdörster G. Testing Nanomaterials of Unknown Toxicity: An Example Based on Platinum Nanoparticles of Different Shapes. Advanced Materials. 2007;19(20):3124-9. DOI: 10.1002/adma.200701962

Pelka J, Gehrke H, Esselen M, Türk M, Crone M, Bräse S, et al. Cellular Uptake of Platinum Nanoparticles in Human Colon Carcinoma Cells and Their Impact on Cellular Redox Systems and DNA Integrity. Chemical Research in Toxicology. 2009;22(4):649-59. DOI: 10.1021/tx800354g

Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time Evolution of the Nanoparticle Protein Corona. ACS Nano. 2010;4(7):3623-32. DOI: 10.1021/nn901372t

Dominguez-Medina S, Blankenburg J, Olson J, Landes CF, Link S. Adsorption of a Protein Monolayer via Hydrophobic Interactions Prevents Nanoparticle Aggregation under Harsh Environmental Conditions. ACS Sustainable Chemistry & Engineering. 2013;1(7):833-42. DOI: 10.1021/sc400042h

Xu L, Liu Y, Chen Z, Li W, Liu Y, Wang L, et al. Surface-Engineered Gold Nanorods: Promising DNA Vaccine Adjuvant for HIV-1 Treatment. Nano Letters. 2012;12(4):2003-12. DOI: 10.1021/nl300027p

Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences. 2007;104(7):2050-5. DOI: 10.1073/pnas.0608582104

Verma A, Stellacci F. Effect of Surface Properties on Nanoparticle-Cell Interactions. Small. 2010;6(1):12-21. DOI: 10.1002/smll.200901158

Schäffler M, Semmler-Behnke M, Sarioglu H, Takenaka S, Wenk A, Schleh C, et al. Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles. Nanotechnology. 2013;24(26):265103. DOI: 10.1088/0957-4484/24/26/265103

Fleischer CC, Payne CK. Nanoparticle-Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes. Accounts of Chemical Research. 2014;47(8):2651-9. DOI: 10.1021/ar500190q

Cho EC, Zhang Q, Xia Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nature Nanotechnology. 2011;6(6):385-91. DOI: 10.1038/nnano.2011.58

Allouni ZE, Cimpan MR, Høl PJ, Skodvin T, Gjerdet NR. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids and Surfaces B: Biointerfaces. 2009;68(1):83-7. DOI: 10.1016/j.colsurfb.2008.09.014

Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, et al. Oxide Nanoparticle Uptake in Human Lung Fibroblasts: Effects of Particle Size, Agglomeration, and Diffusion at Low Concentrations. Environmental Science & Technology. 2005;39(23):9370-6. DOI: 10.1021/es051043o

Drescher D, Orts-Gil G, Laube G, Natte K, Veh RW, Österle W, Kneipp J. Toxicity of amorphous silica nanoparticles on eu­karyotic cell model is determined by particle agglomeration and serum protein adsorption effects. Analytical and Bioanalytical Chemistry. 2011;400(5):1367-73. DOI: 10.1007/s00216-011-4893-7

Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. Particokinetics In Vitro: Dosimetry Considerations for In Vitro Nanoparticle Toxicity Assessments. Toxicological Sciences. 2007;95(2):300-12. DOI: 10.1093/toxsci/kfl165

Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP. Effects of Cell Culture Media on the Dynamic Formation of Protein-Nanoparticle Complexes and Influence on the Cellular Response. ACS Nano. 2010;4(12):7481-91. DOI: 10.1021/nn101557e

Liopo VA, Avdeychik SV, Asymont EI, Struk VA, Vorontsov AS. Estimation of size parameters of material objects. Scientific bulletins. Series: Mathematics. Physics. 2013;33(26):194-203.

Radaic A, Pugliese GO, Campese GC, Pessine FBT, de Jesusa MB. Como estudar interações entre nanopartículas e sistemas biológicos. Química Nova. 2016;39(10):1236-44. DOI: 10.21577/0100-4042.20160146

Resolution of the Chief State Sanitary Doctor of the Russian Federation dated October 31, 2007 No. 79 “On approval of the Concept of toxicological studies, risk assessment methodology, methods of identification and quantification of nanomaterials”.

Onishchenko GG, Zaitseva NV, Zemlyanova MA. Hygienic indication of health effects during environmental exposure to chemical factors. Perm: Knizhnyy format; 2011, 532 p.

Antsiferov VN, Antsiferova IV. Nanotechnology and nanomaterials, risks. Ekaterinburg: Ural Branch of the Russian Academy of Sciences; 2014, 222 p.

Published

2020-04-13

How to Cite

1.
Leonenko N, Leonenko O. Factors Influencing the Manifestation of Toxicity and Danger of Nanomaterials. Innov Biosyst Bioeng [Internet]. 2020Apr.13 [cited 2025Jun.30];4(2):75-88. Available from: https://ibb.kpi.ua/article/view/192810

Issue

Section

Articles