DOI: https://doi.org/10.20535/ibb.2020.4.2.192810

Factors Influencing the Manifestation of Toxicity and Danger of Nanomaterials

Nataliia Leonenko, Olga Leonenko

Abstract


Background. The development of new technologies of the directed synthesis and use of nanoparticles and nanomaterials with properties that are radically different from those of traditional materials, related to peculiarities of their dimensions and to the combination and variability range of physicochemical properties, parameters, characteristics of nanoparticles and their coating surface, procedures and manipulations when conducting studies, can result in development of quite different effects and risks.

Objective. The purpose of the paper is analysis of the significance of dimensional and structural factors, and their combinations in the manifestation of toxicity and danger of nanomaterials based on published data.

Methods. Analysis and systematization of scientific data on the assessment of manifestations of toxicity and hazard of nanomaterials over the past 20 years.

Results. The transition of substances to the nanoscale state makes them chemically more active – the smaller the size of the nanoparticles, the stronger the effect they show in comparison with equivalent amounts of this substance in a traditional macro form. On contact with the biological environment, their surface is covered with proteins. When entering the body, they may undergo agglomeration, dissociation, or modification. Procedures and manipulations in the research can also affect the properties and, consequently, the toxicity of nanoparticles. Most nanoparticles are unstable in dispersion, prone to aggregation and sedimentation, which significantly affects the process of absorption of nanoparticles and their toxicity.

Conclusions. The toxicity and danger of nanoparticles and nanomaterials depend on many factors and their combinations. The complexity of assessing the impact of nanostructures is determined by the range of variability of properties, chemical, geometric, physico-chemical properties and characteristics, size, surface of nanoparticles. The improvement and development of new approaches to identifying the danger of nanoscale objects is a promising direction of scientific investigations.

Keywords


Nanomaterials; Nanoparticles; Toxic effect; Danger

References


Goldyreva TP. Biomedical foundations of life safety: educational-methodical manual: part 2. Perm: CPI Prokrost; 2014. 155 p.

Demin VF, Belushkina NN, Pal'cev MA. Health risk assessment from impact of nano-, nanobiomaterials: methods of evaluation and practical application. Molekuljarnaja Medicina. 2012;4:7-17.

Bulanov EN. Obtaining and research of nanostructured biocompatible materials based on hydroxyapatite. Nizhny Novgorod: Nizhny Novgorod State University; 2012. 103 p.

Smirnov VI. Physical foundations of nanotechnology and nanomaterials. Ulyanovsk: UlSTU, 2017. 240 p.

Shatorna VF. Nanotechnology, nanomedicine, nanobiology – a look at the problem. Visnyk Problem Biologii' i Medycyny. 2013;2:40-4.

Roduner E. World of materials and technologies. Size effects in nanomaterials. Moscow: Technosphere; 2010. 352 p.

Chang XL, Yang ST, Xing G. Molecular toxicity of nanomaterials. J Biomed Nanotechnol. 2014;10(10):2828-51. DOI: 10.1166/jbn.2014.1936

Syrma OI. Physical properties of nanoparticles and their biological effects. Integratyvna Antropologija. 2013;1:30-3.

Kutsan AT, Romanko ME, Orobchenko AL. Safety and toxicity assessment of metal nanoparticles as prototypes of veterinary nanonutriceutics, according to the definition of systemic biomarkers in in vitro and in vivo experiments. In: Materiály VIII Mezi­národní vědecko-praktická konference "Moderní vymoženosti vědy -2012". Díl 22. Biologické vědy. Zvěrolékařství; 2012; Praha. p. 84–87. Available from: http://www.rusnauka.com/4_SND_2012/Veterenaria/1_100160.doc.htm

Rusanov AI. The wonderful world of nanostructures. J General Chem. 2012;72(4):532-49.

Pavlygo TM, Serdjuk GG, Pavlygo IJ. Danger nanomaterials and standardized methods of its evaluation. Naukovi Notatky. 2015;49:114-8.

Polenov YV. Physico-chemical foundations of nanotechnology. Ivanovo: Ivanovo State University of Chemistry and Technology; 2013. 196 p.

Kazak AA, Stepanov EG, Gmoshinsky IV, Khotimchenko SA. Comparative analysis of modern approaches to risk estimation from artificially created nanoparticles and nanomaterials. Voprosy Pitanija. 2012;81(4):11-7.

Hejazy M, Koohi MK, Bassiri MPA, Najafi D. Toxicity of manufactured copper nanoparticles – a review. Nanomed Res J. 2018;3(1):1-9. DOI: 10.22034/nmrj.2018.01.001

Derjabina TD. The toxicity of ions, nano- and microparticles of copper in biotests of various levels of organization. Mikrojelementy v Medicine. 2013;14(2):47-9.

Akafieva TI, Zvezdin VN. Hygienic and toxicological safety assessment of nano-dispersed sillicon oxide. Vestnik Permskogo Universiteta Biologija Mediko-Biologicheskie Nauki. 2012;2:71-4.

Latyshevskaya NI, Strekalova AS. Ecological and hygienic problems of the nanotechnological process. Gigiena i Sanitarija. 2012;5:8-11.

Seyfulla RD, Kim EK. Problems of toxicity of nanopharmacological preparations. Jeksperimental'naja i Klinicheskaja Farmakologija. 2013;76(2):43-8.

Zhu MT, Feng WY, Wang B, Wang TC, Gu YQ, Wang M, et al. Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology. 2008;247(2-3):102-11. DOI: 10.1016/j.tox.2008.02.011

Katsnelson BA, Privalova LI, Kuzmin SV, Degtyaryova TD, Sutunkova MP, Minigaliyeva IA, et al. Experimental data pertaining to pulmotoxicity and absorptive toxicity of magnetite (Fe3O4) particles within nano- and micrometric ranges. Toksikologicheskij Vestnik. 2010;2:17-24.

Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Loginova NV, Minigalieva IA, et al. Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview). Int J Nanomed. 2015;10:3013-29. DOI: 10.2147/IJN.S80843

Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008 Jan;4(1):26-49. DOI: 10.1002/smll.200700595

Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. Toxicity of silver nanoparticles – nanoparticle or silver ion? Toxicol Lett. 2012;208(3):286-92. DOI: 10.1016/j.toxlet.2011.11.002

Kushnina DA. The study of the toxicity of nano- and microparticles of copper on a culture of human fibroblasts. Fundamental'nye i Prikladnye Issledovanija Problemy i Rezul'taty. 2015;21:7-11.

Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823-39. DOI: 10.1289/ehp.7339

Prodanchuk NG, Balan GM. Titanium dioxide nanoparticles and their potential risk to health and the environment. Sovremennye Problemy Toksikologi Pishhevoj i Himicheskoj Bezopasnosti. 2011;4(54):11-27.

Wang J, Fan Y. Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating. Int J Mol Sci. 2014 Dec;15(12):22258-78. DOI: 10.3390/ijms151222258

Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. The nanosilica hazard: another variable entity. Part Fibre Toxicol. 2010;7(39):1-32. DOI: 10.1186/1743-8977-7-39

Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, et al. Cytotoxicity of carbon nanomaterials. Environ Sci Technol. 2005;39(5):1378-83. DOI: 10.1021/es048729l

Zaitseva NV, Zemlyanova MA, Zvezdin VN, Dovbysh AA. Toxicological and hygiene characterization of some metal-containing nanoparticles at various exposition methods: bioaccumulation and morphofunctional exposure features. Toxicolog Rev. 2017;142(1):27-34. DOI: 10.36946/0869-7922-2017-1-27-34

Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW, et al. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett. 2006;161(2):115-23. DOI: 10.1016/j.toxlet.2005.08.007

Lyscov VN, Murzin NV. The nanotechnology security problems. Moscow: MIFI; 2007. 70 p.

Islamov RA, Nersesjan AK. Toxicological and pharmacological aspects of research on nanomaterials and nanocomposites. In: Proceedings of the International Conference dedicated to the 50th anniversary of the Research Institute for biological Safety Problems; 2008; Almaty. p. 128-30.

Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. J Phis Chem. 2007;168(2):176-85. DOI: 10.1016/j.toxlet.2006.12.001

Ivanisenko VA, Podkolodnyj NL, Demenkov PS, Ivanisenko TV, Podkolodnaja OA, Ignat'eva EV, et al. Extracting knowledge from texts of scientific publications and creating knowledge bases in the field of nanobiotechnology. Rossijskie Nanotehnologii. 2011;6(7-8):14-21.

Roy SC, Paulose M, Grimes CA. The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials. 2007;28(31):4667-72. DOI: 10.1016/j.biomaterials.2007.07.045

Krug HF. Nanosafety research – are we on the right track? Angew Chem Int Ed Engl. 2014;53(46):12304-19. DOI: 10.1002/anie.201403367

George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, et al. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano. 2012;6(5):3745-59. DOI: 10.1021/nn204671v

Lee JH, Ju JE, Kim BI, Pak PJ, Choi EK, Lee HS, et al. Rod-shaped iron oxide nanoparticles are more toxic than sphereshaped nanoparticles to murine macrophage cells. Environ Toxicol Chem. 2014;33(12):2759-66. DOI: 10.1002/etc.2735

Gus'kova OA, Zav'jalov NV, Skvorcova EL. Nanoparticles of silver, titanium, zinc. Review of current toxicological data. Sanitarnyj Vrach. 2014;6:47-52.

Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJ. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol. 2014 Jul;37(3):336-47. DOI: 10.3109/01480545.2013.866134

Lovrić J, Bazzi HS, Cuie Y, Fortin GR, Winnik FM, Maysinger D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med (Berl). 2005;83(5):377-85. DOI: 10.1007/s00109-004-0629-x

Zhang T, Wang Y, Kong L, Xue Y, Tang M. Threshold dose of three types of quantum dots (QDs) induces oxidative stress triggers DNA damage and apoptosis in mouse fibroblast L929 cells. Int J Environ Res Public Health. 2015;12(10):13435-54. DOI: 10.3390/ijerph121013435

Putsillo EV. A systematic approach to assessing the impact of nanotechnology on the health of the nation. In: Proceedings of ХІІ International Scientific Conference Modernization of Russia: Key Problems and Solutions; 2011 Dec 15–16. 14 p.

Trineeva OV. Methods of analysis of vitamin E (review). Vestnik VSU Ser Chem Biol Pharm. 2013;1:212-24.

Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, et al. C60 in water: nanocrystal formation and microbial response. Environ Sci Technol. 2005;39(11):4307-19. DOI: 10.1021/es048099n

Glushkova AV, Radilov AS, Dulov SA The manifestations of toxicity of nanoparticles (a review). Gigiena i Sanitarija. 2011;2:81-6.

Gendrikson, OD, Zherdev AV, Gmoshinskij IV, Dzantiev BB. Fullerenes: in vivo studies of biodistribution, toxicity and biological effects. Rossijskie Nanotehnologii. 2014;9(9-10):42-54.

Kalmantaeva OV, Firstova VV, Potapov VD, Zyrina EV, Gerasimov VN, Ganina EA, et al. Silver-nanoparticle exposure on immune system of mice depending on the route of administration. Nanotechnologies in Russia. 2014;9(9-10):571-6. DOI: 10.1134/s1995078014050061

Liu J, Sonshine DA, Shervani S, Hurt RH. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010 Nov 23;4(11):6903-13. DOI: 10.1021/nn102272

Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol in Vitro. 2009;23(6):1076-84. DOI: 10.1016/j.tiv.2009.06.001

McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22(1):116-27. DOI: 10.1016/j.jfda.2014.01.010

Liu J, Hurt RH. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol. 2010;44(6):2169-75. DOI: 10.1021/es9035557

Foldbjerg R, Irving ES, Hayashi Y, Sutherland DS, Thorsen K, Autrup H, et al. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci. 2012;130(1):145-57. DOI: 10.1093/toxsci/kfs225

Liu J, Wang Z, Liu FD, Kane AB, Hurt RH. Chemical transformations of nanosilver in biological environments. ACS Nano 2012;6(11):9887-99. DOI: 10.1021/nn303449n

Kittler S, Greulich C, Diendorf J, Köller M, Epple M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Materl. 2010;22(16):4548-54. DOI: 10.1021/cm100023p

Gondikas A, Morris A, Reinsch B, Marinakos S, Lowry G, Hsu-Kim H. Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol. 2012;46(13):7037-45. DOI: 10.1021/es3001757

Li Y, Zhou Y, Wang HY, Perrett S, Zhao Y, Tang Z, et al. Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. Angew Chem Int Ed Engl. 2011;50(26):5860-64. DOI: 10.1002/anie.201008206

Tolaymat TM, Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ. 2010;408(5):999-1006. DOI: 10.1016/j.scitotenv.2009.11.003

Ahamed M, Karns M, Goodson M, Rowe J, Hussain S, Schlager J, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol. 2008;233(3):404-10. DOI: 10.1016/j.taap.2008.09.015

Nymark P, Catalán J, Suhonen S, Järventaus H, Birkedal R, Clausen P, et al. Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Toxicology. 2013;313(1):38-48. DOI: 10.1016/j.tox.2012.09.014

Suresh A, Pelletier D, Wang W, Morrell-Falvey J, Gu B, Doktycz M. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir. 2012;28(5):2727-35. DOI: 10.1021/la2042058

Haase A, Tentschert J, Jungnickel H, Graf P, Mantion A, Draude F, et al. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses. J Phys Conf Ser. 2011;304:012030. DOI: 10.1088/1742-6596/304/1/012030

Crater J, Carrier R. Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol Biosci. 2010;10(12):1473-83. DOI: 10.1002/mabi.201000137

Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, et al. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol. 2012;46(2):1119-27. DOI: 10.1021/es202417t

Monopoli M, Åberg C, Salvati A, Dawson K. Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnol. 2012;7(12):779-86. DOI: 10.1038/nnano.2012.207

Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc. 2011;133(8):2525-34. DOI: 10.1021/ja107583h

Ashkarran A, Ghavami M, Aghaverdi H, Stroeve P, Mahmoudi M. Bacterial effects and protein corona evaluations: crucial ignored factors in the prediction of bio-efficacy of various forms of silver nanoparticles. Chem Res Toxicol. 2012;25(6):1231-42. DOI: 10.1021/tx300083s

Hansen SF. Exposure pathways of nanomaterials. In: WHO Workshop on Nanotechnology and Human Health: Scientific Evidence and Risk Governance; 2012 Dec 10–11; Bonn, Germany. Available from: http://www.nanopartikel.info/files/downloads/WHO-Report-Nanotechnology-and-Health-2012.pdf

Poland C. Nanoparticles: possible routes of intake. WHO Workshop on Nanotechnology and Human Health: Scientific Evidence and Risk Governance; 2012 Dec 10–11; Bonn, Germany. Available from: http://www.nanopartikel.info/files/downloads/WHO-Report-Nanotechnology-and-Health-2012.pdf

Howard V. General toxicity of NM. In: WHO Workshop on Nanotechnology and Human Health: Scientific Evidence and Risk Governance; 2012 Dec 10–11; Bonn, Germany. Available from: http://www.nanopartikel.info/files/downloads/WHO-Report-Nanotechnology-and-Health-2012.pdf

Vogel U. Pulmonary and reproductive effects of nanoparticles. In: WHO Workshop on Nanotechnology and Human Health: Scientific Evidence and Risk Governance; 2012 Dec 10–11; Bonn, Germany. Available from: http://www.nanopartikel.info/files/downloads/WHO-Report-Nanotechnology-and-Health-2012.pdf

Chiaretti M, Mazzanti G, Bosco S, Bellucci S, Cucina A, Le Foche F, et al. Carbon nanotubes toxicology and effects on metabolism and immunological modification in vitro and in vivo. J Phys Condensed Matter. 2008;20(47):474203-7. DOI: 10.1088/0953-8984/20/47/474203

Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, et al. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2007;19(10):857-71. DOI: 10.1080/08958370701432108

Shumakova AA, Smirnova VV, Tananova ON, Trushina JeN, Kravchenko LV, Aksenov IV, et al. Toxicological and hygienic characteristics of silver nanoparticles introduced into the gastrointestinal tract of rats. Voprosy Pitanija. 2011;80(6):9-18.

Loft S. Cardiovascular and other systemic effects of nanoparticles. In: WHO Workshop on Nanotechnology and Human Health: Scientific Evidence and Risk Governance; 2012 Dec 10–11; Bonn, Germany. Available from: http://www.nanopartikel.info/files/downloads/WHO-Report-Nanotechnology-and-Health-2012.pdf

Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543-57. DOI: 10.1038/nmat2442

Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA. 2008;105(38):14265-70. DOI: 10.1073/pnas.0805135105

Razum KV, Troitski SY, Pyshnaya IA, Bukhtiyarov VI, Ryabchikova EI. Macrophages and epithelial cells differently respond to palladium nanoparticles. Micro Nanosyst. 2014;6(2):133-41. DOI: 10.2174/187640290602141127115839

Pyshnaya IA, Razum KV, Poletaeva JE, Pyshnyi DV, Zenkova MA, Ryabchikova EI. Comparison of behaviour in different liquids and in cells of gold nanorods and spherical nanoparticles modified by linear polyethyleneimine and bovine serum albumin. BioMed Res Int. 2014;2014:1-13. DOI: 10.1155/2014/908175

Arsentieva IP, Baitukalov TA, Glushchenko NN, Dzidziguri JeL, Sidorova EN, Bogoslovskaja OA, et al. Certification of nanoparticles of copper and magnesium and their application in medicine. Materialovedenie. 2007;4:54-6.

Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res. 2009;11(1):77. DOI: 10.1007/s11051-008-9446-4

Elder А, Yang H, Gwiazda R, Teng X, Thurston S, He H, et al. Testing nanomaterials of unknown toxicity: an example based on platinum nanoparticles of different shapes. Adv Mater. 2007;19:3124-9. DOI: 10.1002/adma.200701962

Pelka J, Gehrke H, Esselen M, Türk M, Crone M, Bräse S, et al. Cellular uptake of platinum nanoparticles in human colon carcinoma cells and their impact on cellular redox systems and DNA integrity. Chem Res Toxicol. 2009;22(4):649-59. DOI: 10.1021/tx800354g

Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time evolution of the nanoparticle protein corona. ACS Nano. 2010;4(7):3623-32. DOI: 10.1021/nn901372t

Dominguez-Medina S, Blankenburg J, Olson J, Landes CF, Link S. Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustain Chem Eng. 2013;1(7):833-42. DOI: 10.1021/sc400042h

Xu L, Liu Y, Chen Z, Li W, Liu Y, Wang L, et al. Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett. 2012;12(4):2003-12. DOI: 10.1021/nl300027p

Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA. 2007;104(7):2050-5. DOI: 10.1073/pnas.0608582104

Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, et al. Physical-chemical aspects of protein corona: rele­vance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc. 2011;133(8):2525-34. DOI: 10.1021/ja107583h

Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6(1):12-21. DOI: 10.1002/smll.200901158

Schäffler M, Semmler-Behnke M, Sarioglu H, Takenaka S, Wenk A, Schleh C, et al. Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles. Nanotechnology. 2013;24(26):265103. DOI: 10.1088/0957-4484/24/26/265103

Fleischer CC, Payne CK. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res. 2014;47(8):2651-9. DOI: 10.1021/ar500190q

Cho EC, Zhang Q, Xia Y. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol. 2011;6:385-91. DOI: 10.1038/nnano.2011.58

Allouni ZE, Cimpan MR, Høl PJ, Skodvin T, Gjerdet NR. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids Surf B Biointerfaces. 2009;68(1):83-7. DOI: 10.1016/j.colsurfb.2008.09.014

Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, et al. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol. 2005;39:9370-6. DOI: 10.1021/es051043o

Drescher D, Orts-Gil G, Laube G, Natte K, Veh RW, Österle W, et al. Toxicity of amorphous silica nanoparticles on eu­karyotic cell model is determined by particle agglomeration and serum protein adsorption effects. Anal Bioanal Chem. 2011;400:1367-73. DOI: 10.1007/s00216-011-4893-7

Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci. 2007;95:300-12. DOI: 10.1093/toxsci/kfl165

Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, et al. Effects of cell culture media on the dyna­mic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano. 2010;4(12):7481-91. DOI: 10.1021/nn101557e

Liopo A, Avdejchik SV, Jejsymont EI, Struk VA, Voroncov AS. Assessment of dimensional parameters of material objects. Nauchnye Vedomosti Serija Matematika Fizika. 2013;33:194-203.

Radaica A, Pugliesea GO, Campesea GC, Pessineb FBT, de Jesusa MB. Studying the interactions between nanoparticles and biological systems. Quimica Nova. 2016;39(10):1236-44. DOI: 10.21577/0100-4042.20160146

On approval of the Concept of toxicological studies, risk assessment methodology, identification methods and quantitative determination of nanomaterials. Moscow: Ministry of Justice of the Russian Federation; 2007. No. 10528.

Onishhenko GG, Zajceva NV, Zemljanova MA. Hygienic indication of health effects during environmental exposure to chemical factors. Perm': Knizhnyj Format; 2011. 532 p.

Anciferov VN, Anciferova IV. Nanotechnology and nanomaterials, risks. Yekaterinburg: Ural Branch of the Russian Academy of Sciences; 2014. 222 p.


GOST Style Citations








Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.