Lignin as the Basis for Obtaining Bioplastics

Authors

  • Angelina Yurchenko Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
  • Nataliia Golub Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
  • Ying Zhu Advances Materials Institute of Shandong Academy of Sciences, China

DOI:

https://doi.org/10.20535/ibb.2019.3.3.173421

Keywords:

Lignin, Biopolymers, Plastic, Mechanical properties, Matrix, Biodegradation

Abstract

Background. The limited reserves of fossil organic sources (petroleum and biogas), the need to solve the problems of utilization and recycling of plastic raises the task of finding alternative materials for traditional plastics. One such source is bioplastics, which include lignin, the second most widespread renewable biopolymer. Lignin can be included in various polymer matrices, including both synthetic polymers (polyethylene, polypropylene, polystyrene, etc.) and polymers derived from products of microorganisms' vital activity (polylactic acid, polybutylene succinate, polyhydroxybutyrate, etc.). The purpose of modern research is to search and create bioplastics that have similar properties to traditional plastic and are characterized by the main feature – the ability to biodegradation.

Objective. Analysis of the properties of biopolymers, which include lignin, depending on the methods of its obtaining, polymers structure, and lignin content.

Conclusions. Among the types of lignin considered, alkaline lignin, which has a structure similar to natural lignin, is the most promising for further research and is better suited to natural polymers that are capable of biodegradation (polylactic acid, cellulose, polyhydroxybutyrate, etc.). The addition of lignin to biopolymers slows down the process of decomposition, and when interacting with synthetic polymers, it gives them the property of minor biodegradation. The best ability to combine with lignin is made up of polymers containing a large number of polar groups, among biopolymers – polyesters polyhydroxybutyrate and polyethylene terephthalate. When using lignin in polymer mixtures, the mechanical properties improve (provided that the lignin is completely mixed with the polymer matrix), the plastics stabilize, and the combustion rate decreases. Among all the considered mixtures of natural polymers and lignin, the best mechanical properties were observed for the mixture of lignin and cellulose.

References

Denysenko TM. Research of modern technologies of plastic products processing. Visnyk of Chernihiv State University of Technology. 2014;1(71):55-64.

Brooks AL, Wang S, Jambeck JR. The Chinese import ban and its impact on global plastic waste trade. Sci Adv. 2018;4(6):1-8. DOI: 10.1126/sciadv.aat0131

Karan H, Funk C, Grabert M, Oey M, Hankamer B. Green bioplastics as part of a circular bioeconomy. Trends Plant Sci. 2019;24(3):237-49. DOI: 10.1016/j.tplants.2018.11.010

Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014 May 16;344(6185):1246843. DOI: 10.1126/science.1246843

Mullen CA, Boateng AA. Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process Technol. 2010;91(11):1446-58. DOI: 10.1016/j.fuproc.2010.05.022

Kai D, Tan MJ, Chee PL, Chua YK, Yap YL, Loh XJ. Towards lignin-based functional materials in a sustainable world. Green Chem. 2016;18(5):1175-200. DOI: 10.1039/c5gc02616d

Toledano A, García A, Mondragon I, Labidi J. Lignin separation and fractionation by ultrafiltration. Sep Purif Technol. 2010;71(1):38-43. DOI: 10.1016/j.seppur.2009.10.024

Zhao C, Xie S, Pu Y, Zhang R, Huang F, Ragauskas AJ, et al. Synergistic enzymatic and microbial lignin conversion. Green Chem. 2016;18(5):1306-12. DOI: 10.1039/c5gc01955a

Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, García-Hidalgo J, et al. Biological valorization of low molecular weight lignin. Biotechnol Adv. 2016;34(8):1318-46. DOI: 10.1016/j.biotechadv.2016.10.001

Collins MN, Nechifor M, Tanasă F, Zănoagă M, McLoughlin A, Stróżyk MA, et al. Valorization of lignin in polymer and composite systems for advanced engineering applications – A review. Int J Biol Macromol. 2019;131:828-49. DOI: 10.1016/j.ijbiomac.2019.03.069

Canetti M, Bertini F, De Chirico A, Audisio G. Thermal degradation behaviour of isotactic polypropylene blended with lignin. Polym Degrad Stab. 2006;91(3):494-8. DOI: 10.1016/j.polymdegradstab.2005.01.052

Canetti M, Bertini F. Supermolecular structure and thermal properties of poly(ethylene terephthalate)/lignin composites. Compos Sci Technol. 2007;67(15-16):3151-7. DOI: 10.1016/j.compscitech.2007.04.013

Kadla JF, Kubo S. Lignin-based polymer blends: Analysis of intermolecular interactions in lignin-synthetic polymer blends. Compos Part A Appl Sci Manuf. 2004;35(3):395-400. DOI: 10.1016/j.compositesa.2003.09.019

Sen S, Patil S, Argyropoulos DS. Thermal properties of lignin in copolymers, blends, and composites: a review. Green Chem. 2015;17(11):4862-87. DOI: 10.1039/C5GC01066G

Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L. Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym Degrad Stab. 2012;97(10):1979-87. DOI: 10.1016/j.polymdegradstab.2012.03.009

Lee HJ, Lee HK, Lim E, Song YS. Synergistic effect of lignin/polypropylene as a compatibilizer in multiphase eco-composites. Compos Sci Technol. 2015;118:193-7. DOI: 10.1016/j.compscitech.2015.08.018

Park SY, Kim J-Y, Youn HJ, Choi JW. Utilization of lignin fractions in UV resistant lignin-PLA biocomposites via lignin-lactide grafting. Int J Biol Macromol. 2019 Oct 1;138:1029-34. doi: 10.1016/j.ijbiomac.2019.07.157.

Saake B, Lehnen R. Lignin. In: Ullmann`s encyclopedia of industrial chemistry. 2007.

Jablonsky M, Andrea S, Haz A. Lignin, potential products and their market value. Wood Res. 2015;60(6):973-86.

Constant S, Wienk HLJ, Frissen AE, de Peinder P, Boelens R, van Es DS, et al. New insights into the structure and compo­sition of technical lignins: a comparative characterisation study. Green Chem. 2016;18:2651-5. DOI: 10.1039/C5GC03043A

Chung H, Washburn NR. 2 - Extraction and types of lignin. In: Lignin in polymer composites. Elsevier; 2016. p. 13–25. DOI: 10.1016/B978-0-323-35565-0.00002-3

Aadil KR, Barapatre A, Jha H. Synthesis and characterization of Acacia lignin-gelatin film for its possible application in food packaging. Biores Bioproc. 2016;3(1):1. DOI: 10.1186/s40643-016-0103-y

Zhang Y, Zhou S, Fang X, Zhou X, Wang J, Bai F, et al. Renewable and flexible UV-blocking film from poly(butylene succinate) and lignin. Eur Polym J. 2019;116:265-74. DOI: 10.1016/j.eurpolymj.2019.04.003

Sadeghifar H, Cui C, Argyropoulos DS. Toward thermoplastic lignin polymers. Part 1. Selective masking of phenolic hydroxyl groups in kraft lignins via methylation and oxypropylation chemistries. Ind Eng Chem Res. 2012;51(51):16713-20. DOI: 10.1021/ie301848j

Materials LT, Synthetic LT, Materials P, Natural LT, Materials P. Lignin-modified thermoplastic materials. In: Lignin chemistry and applications. Elsevier; 2019. p. 135-61. DOI: 10.1016/B978-0-12-813941-7.00005-9

Weihua K, He Y, Asakawa N, Inoue Y. Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). J Appl Polymer Sci. 2004;94(6):2466-74. DOI: 10.1002/app.21204

Reddy N, Salam A, Yang Y. Effect of lignin on the heat and light resistance of lignocellulosic fibers. Macromol Mater Eng. 2007;292(4):458-66. DOI: 10.1002/mame.200600446

Hilburg SL, Elder AN, Chung H, Ferebee RL, Bockstaller MR, Washburn NR. A universal route towards thermoplastic lignin composites with improved mechanical properties. Polymer. 2014;55(4):995-1003. DOI: 10.1016/j.polymer.2013.12.070

Pucciariello R, Auria MD. Lignin/poly (e-Caprolactone) blends with tuneable mechanical properties prepared by high energy ball-milling. J Polymers Environ. 2010;18(3):326. DOI: 10.1007/s10924-010-0212-1

Arancibia MY, López-Caballero ME, Gómez-Guillén MC, Montero P. Release of volatile compounds and biodegradability of active soy protein lignin blend films with added citronella essential oil. Food Control. 2014;44:7-15. DOI: 10.1016/j.foodcont.2014.03.025

Jaganathan G, Manivannan K, Lakshmanan S, Sithique MA. Fabrication and characterization of Artocarpus heterophyllus waste derived lignin added chitosan biocomposites for wound dressing application. Sustain Chem Pharm. 2018;10:27-32. DOI: 10.1016/j.scp.2018.08.002

Ravishankar K, Venkatesan M, Desingh RP, Mahalingam A, Sadhasivam B, Subramaniyam R, et al. Biocompatible hydrogels of chitosan-alkali lignin for potential wound healing applications. Mater Sci Eng C. 2019;102:447-57. DOI: 10.1016/j.msec.2019.04.038

Gordobil O, Egüés I, Llano-Ponte R, Labidi J. Physicochemical properties of PLA lignin blends. Polym Degrad Stab. 2014;108:1. DOI: 10.1016/j.polymdegradstab.2014.01.002

Mousavioun P, George GA, Doherty WOS. Environmental degradation of lignin/poly (hydroxybutyrate) blends. Polym Degrad Stab. 2012;97(7):1114-22. DOI: 10.1016/j.polymdegradstab.2012.04.004

Alexy P, Kac F, Urgelova E. Effect of blending lignin biopolymer on the biodegradability of polyolefin plastics. World J Microbiol Biotechnol. 2001;17:601-7. DOI: 10.1023/A:1012415023385

Ouyang W, Huang Y, Luo H, Wang D. Poly(lactic acid) blended with cellulolytic enzyme lignin: mechanical and thermal properties and morphology evaluation. J Polym Environ. 2012;20(1):1-9. DOI: 10.1007/s10924-011-0359-4

Gordobil O, Egüés I, Labidi J. Modification of Eucalyptus and Spruce organosolv lignins with fatty acids to use as filler in PLA. React Funct Polym. 2016;104:45-52. DOI: 10.1016/j.reactfunctpolym.2016.05.002

Kai D, Chong HM, Chow LP, Jiang L, Lin Q, Zhang K, et al. Strong and biocompatible lignin/poly(3-hydroxybutyrate) composite nanofibers. Compos Sci Technol. 2018;158:26-33. DOI: 10.1016/j.compscitech.2018.01.046

Kovalcik A, Machovsky M, Kozakova Z, Koller M. Designing packaging materials with viscoelastic and gas barrier properties by optimized processing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with lignin. React Funct Polym. 2015;94:25-34. DOI: 10.1016/j.reactfunctpolym.2015.07.001

Huang J. Structure and properties of alkaline lignin-filled poly (butylene succinate) plastics. Iranian Polymer J. 2011;20(1):3-14.

El-Zawawy WK, Ibrahim MM, Belgacem MN, Dufresneb A. Characterization of the effects of lignin and lignin complex particles as filler on a polystyrene film. Mater Chem Phys. 2011;131(1-2):348-57. DOI: 10.1016/j.matchemphys.2011.09.054

Sameni J, Jaffer SA, Sain M. Thermal and mechanical properties of soda lignin/HDPE blends. Compos Part A Appl Sci Manuf. 2018;115:104-11. DOI: 10.1016/j.compositesa.2018.09.016

Pucciariello R, Villani V, Bonini C, D'Auria M, Vetere T. Physical properties of straw lignin-based polymer blends. Polymer. 2004;45(12):4159-69. DOI: 10.1016/j.polymer.2004.03.098

Jayaramudu T, Ko HU, Kim HC, Kim JW, Choi ES, Kim J. Adhesion properties of poly(ethylene oxide)-lignin blend for nanocellulose composites. Compos Part B Eng. 2019;156:43-50. DOI: 10.1016/j.compositesb.2018.08.063

Dörrstein J, Scholz R, Schwarz D, Schieder D, Sieber V, Walther F, et al. Effects of high-lignin-loading on thermal, mecha­nical, and morphological properties of bioplastic composites. Compos Struct. 2018;189:349-56. DOI: 10.1016/j.compstruct.2017.12.003

Verdolotti L, Oliviero M, Lavorgna M, Iannace S, Camino G, Vollaro P, et al. On revealing the effect of alkaline lignin and ammonium polyphosphate additives on fire retardant properties of sustainable zein-based composites. Polym Degrad Stab. 2016;134:115-25. DOI: 10.1016/j.polymdegradstab.2016.10.001

Duval A, Molina-Boisseau S, Chirat C. Comparison of Kraft lignin and lignosulfonates addition to wheat gluten-based materials: Mechanical and thermal properties. Ind Crops Prod. 2013;49:66-74. DOI: 10.1016/j.indcrop.2013.04.027

Wu RL, Wang XL, Li F, Li HZ, Wang YZ. Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol. 2009;100(9):2569-74. DOI: 10.1016/j.biortech.2008.11.044

Miranda CS, Ferreira MS, Magalhães MT, Bispo APG, Oliveira JC, Silva JBA, et al. Starch-based films plasticized with glycerol and lignin from piassava fiber reinforced with nanocrystals from eucalyptus. Mater Today Proc. 2015;2(1):134-40. DOI: 10.1016/j.matpr.2015.04.038

Kaewtatip K, Thongmee J. Effect of kraft lignin and esterified lignin on the properties of thermoplastic starch. Mater Des. 2013;49:701-4. DOI: 10.1016/j.matdes.2013.02.010

Shankar S, Reddy JP, Rhim JW. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films. Int J Biol Macromol. 2015;81:267-73. DOI: 10.1016/j.ijbiomac.2015.08.015

Chauhan M, Gupta M, Singh B, Singh AK, Gupta VK. Effect of functionalized lignin on the properties of lignin-isocyanate prepolymer blends and composites. Eur Polym J. 2014;52(1):32-43. DOI: 10.1016/j.eurpolymj.2013.12.016

Published

2019-10-08

How to Cite

1.
Yurchenko A, Golub N, Zhu Y. Lignin as the Basis for Obtaining Bioplastics. Innov Biosyst Bioeng [Internet]. 2019Oct.8 [cited 2024Nov.22];3(3):185-97. Available from: https://ibb.kpi.ua/article/view/173421

Issue

Section

Articles