DOI: https://doi.org/10.20535/ibb.2019.3.2.169259

Prospects of Using Biological Test-Systems for Evaluation of Effects of Electromagnetic Fields

Lolita Marynchenko, Aljona Nizhelska, Aram Shirinyan, Volodymyr Makara

Abstract


Electromagnetic fields (EMF) can occur both naturally and due to human activity. Nowadays, through the innovative communication technologies, the new sources of artificial EMFs are widely disseminated. Therefore, one needs to study the artificial EMFs and mechanisms of their influence on biosystems. The paper deals with the issues of the influence of artificial EMFs on human health, environment and biological objects. The experimental and theoretical investigations concerning an action of EMF are analyzed. The description of principles of standardization of non-specific EMFs and protection from the influence of man-made fields is presented. Possible mechanisms of EMF and electromagnetic radiation (EMR) action on biological objects, including those due to the accumulation of biogenic magnetic nanoparticles in an organism, are discussed. The aim of the research is to review state-of-the-art methods for detecting the biological effects of non-thermal non-ionizing EMF and EMR and to determine the prospects of using biological test-systems for evaluation of effects of EMFs. Hereby, the main attention is drawn to EMF sensors based on the cultures of microorganisms. The classification of existing test-systems is proposed according to criteria: 1) vitality of cells; 2) motor activity of cells; 3) bioluminescence and color changes under the influence of EMF. The need to develop simple and reliable biological indicators for various types of EMFs, especially for ultrahigh-frequency radiation in connection with the introduction of 5G communications technology, is substantiated. The necessity of standardized test-protocols for comparison of research results is emphasized. It is shown that the description of corresponding experiments should be accompanied by the following features: 1) name of the cell culture; native or modified cells; 2) physical characteristics of EMF or EMR (frequency, power, modulation, source type); 3) exposure duration of; 4) list of parameters to be investigated; 5) research methods; 6) absolute measurements, results and the relative magnitude of an effect; 7) what does the influence depend on (temperature, age of cell culture, composition of the nutrient medium); 8) inheritance of changes in cells; 9) relaxation time of the effect.

Keywords


Man-made electromagnetic fields; Electromagnetic radiation; Biological effects; Test-systems; Classification of test-systems; 5G

Full Text:

PDF

References


Kuzminskyy Ye, Shchurska K. Priority directions of development of ecobiotechnology. 1. Environmental biotechnology. Innov Biosyst Bioeng. 2018;2(1):22-32. DOI: 10.20535/ibb.2018.2.1.119233

Repacholi MH. A history of the international commission on non-ionizing radiation protection. Health Phys. 2017 Oct;113(4):282-300. DOI: 10.1097/HP.0000000000000699

What is the International EMF Project? [Internet]. World Health Organization. 2019 [cited 2019 May 25]. Available from: https://www.who.int/peh-emf/project/EMF_Project/en/

Berezovs'kyĭ V, Zamors'ka TM, Ianko RV. Specific and non-specific electromagnetic irradiation effects on biological objects. Fiziolohichnyi Zhurnal. 2003;59(2):13-24.

The impacts of artificial Electromagnetic Radiation on wildlife (flora and fauna). Current knowledge overview: a background document to the web conference [Internet]. Eklipse-mechanism.eu. 2019 [cited 2019 May 25]. Available from: http://www.eklipse-mechanism.eu/documents/15803/0/EMR-KnowledgeOverviewReport_FINAL_27042018.pdf/1326791c-f39f-453c-8115-0d1c9d0ec942

Cleveland RF, Ulcek JJL. Questions and answers about biological effects and potential hazards of radiofrequency electromagnetic fields [Internet]. Transition.fcc.gov. 2019 [cited 2019 May 25]. Available from: https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet56/oet5

Bhatt CR, Redmayne M, Abramson MJ, Benke G. Instruments to assess and measure personal and environmental radio­frequency-electromagnetic field exposures. Australas Phys Eng Sci Med. 2016 Mar 1;39(1):29-42. DOI: 10.1007/s13246-015-0412-z

Chornyi V, Nykyforov D, Rodkin V, Nozhenko V. Modern situation of the investigation of electromagnetic radiations on human's organism, Eng Educational Technol; 2013(2):112-24. Available from: http://eetecs.kdu.edu.ua/2013_02/EETECS2013_0208.pdf

Guideline IC. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998 Apr;74(4):494-522.

BioInitiative report: A rationale for biologically-based public exposure standards for electromagnetic radiation [Internet]. The BioInitiative Report. 2019 [cited 2019 May 25]. Available from: https://bioinitiative.org/

Quintana S, de Blas JM, Peña J, Blanco J, García LD, Pastor JM. Design and operation of a real-scale electromagnetic shielding evaluation system for reinforced composite construction materials. J Mater Civil Eng. 2018 May 24;30(8):04018162. DOI: 10.1061/(ASCE)MT.1943-5533.0002323

Waldmann-Selsam C, Balmori-de la Puente A, Breunig H, Balmori A. Radiofrequency radiation injures trees around mobile phone base stations. Sci Total Environ. 2016 Dec 1;572:554-69. DOI: 10.1016/j.scitotenv.2016.08.045

Halgamuge MN. Weak radiofrequency radiation exposure from mobile phone radiation on plants. Electromagn Biol Med. 2017 Apr 3;36(2):213-35. DOI: 10.1080/15368378.2016.1220389

Warnke U. Bees, birds and mankind. Destroying nature by 'Electrosmog': effects of wireless communication technologies [Internet]. Media.withtank.com. 2019 [cited 2019 May 25]. Available from: http://media.withtank.com/4a1515f54f.pdf

Balmori A. Electromagnetic pollution from phone masts. Effects on wildlife. Pathophysiology. 2009 Aug 1;16(2-3):191-9. DOI: 10.1016/j.pathophys.2009.01.007

Cammaerts MC, Johansson O. Ants can be used as bio-indicators to reveal biological effects of electromagnetic waves from some wireless apparatus. Electromagn Biol Med. 2014 Dec 1;33(4):282-8. DOI: 10.3109/15368378.2013.817336

Kumar NR, Sangwan S, Badotra P. Exposure to cell phone radiations produces biochemical changes in worker honey bees. Toxicol Inte. 2011 Jan;18(1):70. DOI: 10.4103/0971-6580.75869

Balmori A. Efectos de las radiaciones electromagnéticas de la telefonía móvil sobre los insectos. Revista Ecosistemas. 2006;15(1). Available from: https://www.revistaecosistemas.net/index.php/ecosistemas/article/download/520/495

Margaritis LH, Manta AK, Kokkaliaris KD, Schiza D, Alimisis K, Barkas G, et al. Drosophila oogenesis as a bio-marker responding to EMF sources. Electromagn Biol Med. 2014 Sep 1;33(3):165-89. DOI: 10.3109/15368378.2013.800102

Broomhall M. Report detailing the exodus of species from the Mt. Nardi area of the Nightcap National Park World Heritage Area during a 15-year period (2000-2015) [Internet]. Emraware.com. 2019 [cited 2019 May 25]. Available from: http://emraware.com/Documents/Mt%20Nardi%20Wildlife%20Report%20to%20UNESCO.pdf

Balmori A. Possible effects of electromagnetic fields from phone masts on a population of white stork (Ciconia ciconia). Electromagn Biol Med. 2005 Jan 1;24(2):109-19. DOI: 10.1080/15368370500205472

Kordas D. Birds and trees of Northern Greece: Changes since the advent of 4G wireless [Internet]. Einarflydal.files.wordpress.com. 2019 [cited 2019 May 25]. Available from: https://einarflydal.files.wordpress.com/2017/08/kordas-birds-and-trees-of-northern-greece-2017-final.pdf

Balmori A. Mobile phone mast effects on common frog (Rana temporaria) tadpoles: The city turned into a laboratory. Electromagn Biol Med. 2010 Jan 1;29(1-12):31-5. DOI: 10.3109/15368371003685363

Balmori A. The incidence of electromagnetic pollution on wild mammals: A new "poison" with a slow effect on nature? Environmentalist. 2010 Mar 1;30(1):90-7. DOI: 10.1007/s10669-009-9248-y

Magras IN, Xenos TD. RF radiation‐induced changes in the prenatal development of mice. Bioelectromagnetics. 1997;18(6):455-61. DOI: 10.1002/(sici)1521-186x(1997)18:6<455::aid-bem8>3.0.co;2-1

Otitoloju AA, Osunkalu VO, Oduware R, Obe IA, Adewale AO. Haematological effects of radiofrequency radiation from GSM base stations on four successive generations (F1–F4) of albino mice, Mus Musculus. J Environ Occup Sci. 2012;1(1):17-22. DOI: 10.5455/jeos.20120602121540

IARC Monogr Eval Carcinog Risks Hum. 2002;80:1-395.

Adair RK. Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys Rev A. 1991;43(2):1039. DOI: 10.1103/PhysRevA.43.1039

Brocklehurst B, McLauchlan KA. Free radical mechanism for the effects of environmental electromagnetic fields on biological systems. Int J Radiat Biol. 1996 Jan 1;69(1):3-24. DOI: 10.1080/095530096146147

Binhi VN, Prato FS. Rotations of macromolecules affect nonspecific biological responses to magnetic fields. Sci Rep. 2018;8(1):13495. DOI: 10.1038/s41598-018-31847-y

Liboff AR. Geomagnetic cyclotron resonance in living cells. J Biol Phys. 1985 Dec 1;13(4):99-102. DOI: 10.1007/BF01878387

Blanchard JP, Blackman CF. Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics. 1994;15(3):217-38. DOI: 10.1002/bem.2250150306

Binhi VN. Amplitude and frequency dissociation spectra of ion–protein complexes rotating in magnetic fields. Bioelectromagnetics. 2000 Jan;21(1):34-45. DOI: 10.1002/(SICI)1521-186X(200001)21:1<34::AID-BEM6>3.0.CO;2-8

Zhadin MN, Novikov VV, Barnes FS, Pergola NF. Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics. 1998;19(1):41-5. DOI: 10.1002/(SICI)1521-186X(1998)19:1<41::AID-BEM4>3.0.CO;2-4

Martynyuk VS, Tseyslyer YV. The Hydrophobic-hydrophilic balance in water solutions of proteins as the possible target for extremely low frequency magnetic fields. In: Biophotonics and coherent systems in biology. Boston: Springer; 2007. p. 105-22. DOI: 10.1007/978-0-387-28417-0_8

D'Angelo C, Costantini E, Kamal MA, Reale M. Experimental model for ELF-EMF exposure: Concern for human health. Saudi J Biol Sci. 2015 Jan 1;22(1):75-84. DOI: 10.1016/j.sjbs.2014.07.006

Walleczek J. Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J. 1992;6(13):3177-85. DOI: 10.1096/fasebj.6.13.1397839

Mannerling AC, Simkó M, Mild KH, Mattsson MO. Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells. Radiat Environ Biophys. 2010 Nov 1;49(4):731-41. DOI: 10.1007/s00411-010-0306-0

Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ. Magnetite biomineralization in the human brain. Proceedings of the National Academy of Sciences. 1992 Aug 15;89(16):7683-7. DOI: 10.1073/pnas.89.16.7683

Kirschvink J, Padmanabha S, Boyce C, Oglesby J. Measurement of the threshold sensitivity of honeybees to weak, extremely low-frequency magnetic fields. J Experimental Biol. 1997 Jan 1;200(9):1363-8. Available from: http://jeb.biologists.org/content/jexbio/200/9/1363.full.pdf

Li X, Qu X, Xu Z, Dong W, Wang F, Guo W, et al. Fabrication of three-dimensional flower-like heterogeneous Fe3O4/Fe particles with tunable chemical composition and microwave absorption performance. ACS Appl Mater Interf. 2019 May;11(21): 19267-76. DOI: 10.1021/acsami.9b01783

Gorobets O, Gorobets S, Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: From bacteria to humans. Int J Nanomed. 2017;12:4371. DOI: 10.2147/IJN.S130565

Buchachenko AL, Orlov AP, Kuznetsov DA, Breslavskaya NN. Magnetic isotope and magnetic field effects on the DNA synthesis. Nucleic Acids Res. 2013 Jul 13;41(17):8300-7. DOI: 10.1093/nar/gkt537

Chen C, Chen L, Yi Y, Chen C, Wu LF, Song T. Killing of Staphylococcus aureus via magnetic hyperthermia mediated by magnetotactic bacteria. Appl Environ Microbiol. 2016 Apr 1;82(7):2219-26. DOI: 10.1128/AEM.04103-15

Shevchenko VE, Dziatkovska AD, Nikolov NM, Romanov MO, Burlaka AV, Shchepotin IB, et al. Investigation of the influence of radio frequency hyperthermia and magneto-sensitive nanocomplex on the carcinoma of the Lewis lung. Promeneva Diahnostyka, Promeneva Terapiia. 2011;3-4:20-3.

Ahlbom A, Green A, Kheifets L, Savitz D, Swerdlow A; ICNIRP (International Commission for Non-Ionizing Radiation Protection). Standing Committee on Epidemiology Epidemiology of health effects of radiofrequency exposure. Environ Health Perspect. 2004 Sep 23;112(17):1741-54. DOI: 10.1289/ehp.7306

Ryzhkova TA, Kalinichenko SV, Babich EM, Korotkikh EO, Khvorostyanaya VA. Influence of electromagnetic radiation of a millimeter range on the ability of pathogenic corynebacteria to form biofilms. Zhivyye i Biokosnyye Sistemy. 2015;14. Available from: http://www.jbks.ru/archive/issue-14/article-4

Filipič J, Kraigher B, Tepuš B, Kokol V, Mandić-Mulec I. Effect of low-density static magnetic field on the oxidation of ammonium by Nitrosomonas europaea and by activated sludge in municipal wastewater. Food Technol Biotechnol. 2015;53(2):201-6. DOI: 10.17113/ftb.53.02.15.3629

Gapochka MG. Environmental aspects of interaction of electromagnetic fields of millimeter range with biological objects [dissertation thesis]. Moscow; 2013. Available from: http://www.bio.msu.ru/res/Dissertation/604/DOC_FILENAME/gapochka_avtoref.pdf

Mukhachev EV, Mikhaylova KA, Gabay IA, Nosov VN. The method of biotesting of the influence of electromagnetic radiation of the UHF band using the model of inhibited growth of yeast colonies Saccharomyces cerevisiae S288C. Sreda Obytaniya. 2011(4):247-50. Available from: https://cyberleninka.ru/article/v/metod-biotestirovaniya-vliyaniya-elektromagnitnogo-izlucheniya-uvch-diapazona-s-ispolzovaniem-modeli-ingibiruemogo-rosta-koloniy

Shchegoleva TYu, Gromozova EM, Voychuk SI, Bryuzginova NV, Masyuk BR, Krasov PS. Development of test systems for studying the influence of electromagnetic radiation on biological objects. Telecommun Radio Eng. 2010;69(8):719-25. DOI: 10.1615/telecomradeng.v69.i8.80

Gromozova EN, Voychuk SI, Zelena LB, Gretskey IA. Microorganisms as a model system for studying the biological effects of electromagnetic non-ionizing radiation. Safety Eng. 2012;2(3):89-92. DOI: 10.7562/se2012.2.02.06

Marynchenko LV, Nizhelska OI, Marynchenko VO. Stimulation of accumulation of biomass and fermenting activity of Saccharomyces cerevisiae yeast culture by extra high frequency electromagnetic irradiation. Naukovi Visti NTUU KPI. 2011;3:68-73.

Yakunov AV, Nizhelska AI, Marinchenko LV, Marinchenko VA, Makara VA. Influence of processing of yeast Saccharomyces cerevisiae with millimeter waves on fermentation indices in technology of bioethanol production. Surf Eng Appl Electrochem. 2015 Mar 1;51(2):156-61. DOI: 10.3103/S1068375515020143

Poshtarenko AV. Growth and activity inhibition of yeast culture Saccharomyces cerevisiae by using microwave electromagnetic radiation. Problems Environ Biotechnol. 2014 Feb 12;2. DOI: 10.18372/2306-6407.2.7470

Sarapultseva EI, Igolkina JV, Tikhonov VN, Dubrova YE. The in vivo effects of low-intensity radiofrequency fields on the motor activity of protozoa. Int J Radiat Biol. 2014 Mar;90(3):262-7. DOI: 10.3109/09553002.2014.868612

Brezgunov VN, Zavalskiy LYu, Lazarev AV. Chemotaxis of bacteria. Uspekhi Mikrobiologii.1989:23:3-28.

Serikov AA, Khristoforov LN. On the effects of microwave electromagnetic radiation on biomolecular systems. In: Investigations of the interaction of electromagnetic waves of millimeter and submillimeter ranges with biological systems. Kyiv: Naukova Dumka; 1989. p. 41-50.

Zotova EA, Malinina YuA, Somov AYu. Biological effects of influence millimeter and submillimeter of radiation. Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk. 2008;10(2):636-41. Available from: https://cyberleninka.ru/article/v/biologicheskie-effekty-vozdeystviya-millimetrovogo-i-submillimetrovogo-izlucheniya

Nizhelska O.I. Influence of microwave irradiation on the Saccharomyces cerevisiae yeast culture, bacteria Escherichia coli and green alga Dunaliella viridis [dissertation thesis]. Kyiv; 2008. Available from: http://irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?Z21ID=&I21DBN=ARD&P21DBN=ARD&S21STN=1&S21REF=10&S21FMT=fullwebr&C21COM=S&S21CNR=20&S21P01=0&S21P02=0&S21P03=A=&S21COLORTERMS=1&S21STR=%D0%9D%D1%96%D0%B6%D0%B5%D0%BB%D1%8C%D1%81%D1%8C%D0%BA%D0%B0$

Dronina TV, Popova LYu. Effect of millimeter electromagnetic waves on luminescence of bacteria. Biophysics. 1998;43(3):522-5.

Berzhanskaya LYu, Berzhanskiy VI, Belopdotova OYu. Influence of EM fields on the bioluminescence activity of bacteria. Biophysics. 1995;40(5-С):974-7.

Berzhanskaya LYu, Berzhanskiy VN, Starcheyeskaya TG, Chubov II. Luminescental and population instability of Photobacteria in the period of geomagnetic radiation. Scientific Notes of V.I. Vernadsky Crimean Federal University Biology Chemistry. 2004;17(1):127.

Gorgo Y, Gretsky I, Demydova O. The use of luminos bacteria Photobacterium phosphoreum as a bioindicator of geomagnetic activity. Innov Biosyst Bioeng. 2018;2(4):271-7. DOI: 10.20535/ibb.2018.2.4.151459

Zelena L, Gretsky I, Gromozova E. Influence of ultrahigh frequency irradiation on Photobacterium phosphoreum luxb gene expression. Open Life Sci. 2014 Oct 1;9(10):1004-10. DOI: 10.2478/s11535-014-0347-5

Kharchuk MS, Grigoriev PE, Kachur TL, Gromozova EN. Properties of Saccharomyces cerevisiae volutin granules under conditions of the change of space weather. Mikrobiolohichnyi Zhurnal. 2016 Jul;78(4):71-81. DOI: 10.15407/microbiolj78.04.071

Gromozova EN, Kachur TL, Voychuk SI, Kharchuk MS. Research of metachromatic reaction of Saccharomyces cerevisiae. Mikrobiolohichnyi Zhurnal 2016;78(3):45-51. DOI: 10.15407/microbiolj78.03.045


GOST Style Citations








Copyright (c) 2019 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.