DOI: https://doi.org/10.20535/ibb.2018.2.4.147292

Activated Sludge Biomass as Magnetic Biosorbent

Svitlana Gorobets, Kseniia Hetmanenko, Daryna Ponomarenko, Oleksii Kovalyov, Irina Borovik

Abstract


Background. Heavy metal pollution is a typical issue for a number of industries, and their removal is crucial for the environmental ecology. Biomass can be used as cheap and eco-friendly sorbent, for example excess activated sludge, because its utilization is a major expense in water treatment. Sorbents with magnetic properties can be extracted using fast and efficient magnetic separation method. Mechanism of biomineralization biogenic magnetic nanoparticles (BMN) is proved to be general for all three domains, so it is important to study what amount of activated sludge microorganisms are potential BMN producents.

Objectives. The objective of this study is to determine potential BMN producents among microorganisms of activated sludge using methods of comparative genomics, to obtain magnetic biosorbent and investigate its efficiency in Fe2+ removal from FeSO4 solution (500 mg/L).

Methods. For estimating homologies between biomineralization proteins of Μagnetospirillum gryphiswaldense MSR-1 and microorga­nisms of activated sludge were used methods of pairwise and multiple genomic sequence alignment using free access tool BLAST (National Centre for Biotechnological Information, USA). For obtaining magnetic sorbent from activated sludge biomass high gradient magnetic separation was used.

Results. Bioinformatic analysis showed, that among studied microorganisms of activated sludge, whose genomes are sequenced per 25% and more, all appeared to be potential BMN producers (Stentor coeruleus, Bodo saltans, Sphaerotilus natans, Beggiatoa alba B18LD, Oscillatoria acuminata PCC 6304, Oscillatoria sp. PCC 10802, Oscillatoria nigro-viridis PCC 7112, Rivularia sp. PCC 7116, Anabaena sp. CRKS33, Anabaena sp. WA113, Anabaena sp. AL93, Anabaena sp. PCC7108, Anabaena MDT 14b, Thiothrix nivea DSM 5205, Duganella zoogloeoides ATCC 25935), 12 of them – potential producents of intracellular crystalline BMN. It was shown, that Fe2+ removal efficiency isequal for non-separated activated sludge and both magnetic and non-magnetic fractions.

Conclusions. Results show that excess sludge biomass can be used to obtain magnetic sorbent, which can be made without the use of extra magnetization with artificial magnetic nanoparticles. This allows extracting sorbent using methods of high gradient magnetic separation. Sorption results of Fe2+ for magnetically labelled biosorbent on the base of activated sludge microorganisms experimentally proves equal efficiency of magnetically labelled, non-labelled fractions and biomass which was not exposed to HGMS and is higher than 97%.

Keywords


Activated sludge; Magnetic nanoparticles; Biomineralization; Μagnetospirillum gryphiswaldense MSR-1; Mam-proteins; Biosorption; Magnetic sorbent; High gradient magnetic separation

References


Aslan S, Yildiz S, Ozturk M. Biosorption of Cu2+ and Ni2+ ions from aqueous solutions using waste dried activated sludge biomass. Pol J Chem Tech. 2018;20(3):20-28. DOI: 10.2478/pjct-2018-0034

Yayintas OT, Yilmaz S, Turkoglu M, Dilgin Y. Determination of heavy metal pollution with environmental physicochemical parameters in waste water of Kocabas Stream (Biga, Canakkale, Turkey) by ICP-AES. Environ Monit Assess. 2007 Apr;127(1-3):389-397. DOI: 10.1007/s10661-006-9288-4

Pagnanelli F, Mainelli S, Bornoroni L, Dionisi D, Toro L. Mechanisms of heavy-metal removal by activated sludge. Chmosphere. 2009 May;75(8):1028-1034. DOI: 10.1016/j.chemosphere.2009.01.043

Gorobets SV, Kasatkina TP, Gorobets ОYu, Ukrainetz AI, Goyko IYu. Intensification of copper and chrome ions sorption by yeast of Saccharomyces cerevisiae in the magnetic field. Kharchova Promyslovist. 2004;3:107-9.

Jianlong W, Yi Q, Horan N, Stentiford E. Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass. Bioresour Technol. 2000 May;75(2):157-161. DOI: 10.1016/S0960-8524(00)00041-9

Liu D, Tao Y, Li K, Yu J. Influence of the presence of three typical surfactants on the adsorption of nickel (II) to aerobic activated sludge. Bioresour Technol. 2012 Dec;126:56-63. DOI: 10.1016/j.biortech.2012.09.025

Pamukoglu MY, Kargi F. Removal of copper(II) ions from aqueous medium by biosorption onto powdered waste sludge. Process Biochem. 2006 May;41(5):1047-1054. DOI: 10.1016/j.procbio.2005.11.010

Wei D, Zhang K, Wang S, Sun B, Wu N, Xu W, et al. Characterization of dissolved organic matter released from activated sludge and aerobic granular sludge biosorption processes for heavy metal treatment via a fluorescence approach. Int Biodeterior Biodegrad. 2017 March;124:326-333. DOI: 10.1016/j.ibiod.2017.03.018

Yuncu B, Sanin FD, Yetis U. An investigation of heavy metal biosorption in relation to C/N ratio of activated sludge. J Hazard Mater. 2006 Sep 21;137(2): 990-997. DOI: 10.1016/j.jhazmat.2006.03.020

Zhou Y, Zhang Z, Zhang J, Xia S. New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals. J Environ Sci. 2016 Jul;45:248-256. DOI: 10.1016/j.jes.2016.03.007

Zhang Q, Hu J, Lee DJ, Chang Y, Lee YJ. Sludge treatment: Current research trends. Bioresour Technol. 2017 Nov;243:1159-1172. DOI: 10.1016/j.biortech.2017.07.070

Perez-Elvira SI, Nieto Diez P, Fdz-Polanco F. Sludge minimisation technologies. Rev Environ Sci Biotechnol. 2006 Nov;5:375-398. DOI: 10.1007/s11157-005-5728-9

Nuhoglu Y, Oguz E. Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis. Prosess Biochem. 2003 June 30;38:1627-1631. DOI: 10.1016/S0032-9592(03)00055-4

Hammaini A, González F, Ballester A, Blázquez ML, Muñoz JA. Biosorption of heavy metals by activated sludge and their desorption characteristics. J Environ Manage. 2007 Sep;84(4):419-426. DOI: 10.1016/j.jenvman.2006.06.015

Kargi F, Cikla S. Biosorption of zinc(II) ions onto powdered waste sludge (PWS): Kinetics and isotherms. Enzyme Microb. Technol. 2006 March;38(5):705-710. DOI: 10.1016/j.enzmictec.2005.11.005

Laurent J, Casellas M, Pons MN, Dagot C. Cadmium biosorption by ozonized activated sludge: The role of bacterial flocs surface properties and mixed liquor composition. J Hazard Mater. 2010 Nov 15;183(1-3):256-263. DOI: 10.1016/j.jhazmat.2010.07.019

Ong SA, Toorisaka E, Hirata M, Hano T. Comparative study on kinetic adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge. Appl Water Sci. 2013 March;3:321-325. DOI: 10.1007/s13201-013-0084-3

Rao PR, Bhargavi C. Studies on biosorption of heavy metals using pretreated biomass of fungal species. Int J Chem Chem Eng. 2013;3(3):171-180.

Yang C, Wang J, Lei M, Xie G, Zeng G, Luo S. Biosorption of zinc (II) from aqueous solution by dried activated sludge. J Environ Sci. 2010;22(5):675-680. DOI: 10.1016/S1001-0742(09)60162-5

Zhmur NA. Technological and biochemical processes of wastewater treatment at buildings with aeration tanks. Moscow: Aquaros; 2003. 512 p.

Sakaguchi T, Burgess JG, Matsunaga T. Magnetite formation by a sulphate-reducing bacterium. Nature. 1993;365:47-49. DOI: 10.1038/365047a0

Blakemore R. Magnetotactic bacteria. Science. 1975 Oct 24;190(4212):377-379. DOI: 10.1126/science.170679

Frankel RB, Blakemore RP, Wolfe RS. Magnetite in freshwater magnetotactic bacteria. Science. 1979 Mar;203(4387):1355-1356. DOI: 10.1126/science.203.4387.1355

Bazylinski DA, Frankel RB. Magnetosome formation in prokaryotes. Nat Rev Microbiol. 2004 Mar;2(3):217-230. DOI: 10.1038/nrmicro842

Vainshtein M, Suzina N, Kudryashova E, Ariskina E. New magnet-sensitive structures in bacterial and archaeal cells. Biol Cell. 2002 Feb;94(1):29-35. DOI: 10.1016/S0248-4900(02)01179-6

Gorobets Ο, Gorobets S, Sorokina L. Biomineralization and synthesis of biogenic magnetic nanoparticles and magnetosensitive inclusions in microorganisms and fungi. Funct Mater. 2014;21(4):427-436. DOI: 10.15407/fm21.04.427

Gorobets SV, Mikhailenko NA. High-gradient ferromagnetic matrices for purification of wastewaters by the method of magnitoelectrolysis. J Water Chem Technol. 2014;36(4):153-159. DOI: 10.3103/S1063455X14040018

Gorobets SV, Mykhailenko NA, Makarchuk OV, Dontsova TA, Astrelin IM. Purification of aqeous media by magnetically operated saponite sorbents. Eastern-European Journal of Enterprise Technologies. 2015;4/10(67):13-20. DOI: 10.15587/1729-4061.2015.46573

Gorobets OYu, Gorobets SV, Gorobets YuI. Biogenic magnetic nanoparticles: biomineralization in prokaryotes and eukaryotes. In: Dekker Encyclopedia of Nanoscience and Nanotechnology. 3rd ed. New York: CRC Press; 2014. p. 300-8.

Gorobets OYu, Gorobets SV, Gorobets YuI. Biomineralization of intracellular biogenic magnetic nanoparticles and their expected functions. Naukovi Visti NTUU KPI. 2013;3:28-33.

Gorobets O, Gorobets S, Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans. Int J Nanomed. 2017 Jun 12;12:4371-4395. DOI: 10.2147/IJN.S130565

National Center for Biotechnology Information [Internet]. Bethesda, Maryland, U.S.: NCBI; 1988. Available from: https://www.ncbi.nlm.nih.gov

Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D. A Hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol. 2005 Nov; 187(21):7176-7184. DOI: 10.1128/JB.187.21.7176-7184.2005

Schübbe S, Würdemann C, Peplies J, Heyen U, Wawer C, Glockner F, et al. Transcriptional organization and regulation of magnetosome operons in Magnetospirillum gryphiswaldense. Appl Environ Microbiol. 2006 Sep;72(9):5757-5765. DOI: 10.1128/AEM.00201-06

National Center for Biotechnology Information. BLAST Assembled Genomes [Internet]. Bethesda, Maryland, U.S.: NCBI; 1988. Available from: http://blast.ncbi.nlm.nih.gov

Schüler D, Baeuerlein E. Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch Microbiol. 1996 Nov;166(5):301-307. DOI: 10.1007/s002030050387

Li W, Pio F, Pawłowski K, Godzik A. Saturated BLAST: an automated multiple intermediate sequence search used to detect distant homology. Bioinformatics. 2000 Dec;16(12):1105-1110. DOI: 10.1093/bioinformatics/16.12.1105

Ukrainian Scientific Centre for the Protection of Waters. Guidance document 11.1.4.023-95. Method of determination of biochemical oxygen consumption after n days (BSC) in natural and sewage waters. Kyiv: Ukrainian Scientific Centre for the Protection of Waters; 1995.






Copyright (c) 2018 The Authors

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.