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Background. Pyruvate serves as an important diagnostic marker of mitochondrial dysfunctions, lactic acidosis, and 
certain oncological diseases. Traditional methods for pyruvate analysis have a number of significant limitations: 
they require complex equipment, are labor-intensive, involve time-consuming sample preparation. Therefore, the 
development of new, sensitive, and selective methods for determining pyruvate concentration is a highly relevant 
task. 
Objective. The aim of this work was to develop a procedure for the determination and optimization of the parame-
ters of a mathematical model of an amperometric biosensor based on immobilized pyruvate oxidase, employing 
mathematical modeling of diffusion–reaction processes. 
Methods. The biosensor was fabricated using a photopolymer matrix. The analytical characteristics of the biosensor 
were investigated experimentally. Reaction–diffusion mathematical model was developed to analyze the sensitivity 
of the biosensor to the substrate (pyruvate) with respect to system parameters. Optimization of these parameters 
was performed using the gradient descent method.  
Results. The study demonstrated that the pyruvate oxidase-based biosensor exhibited a stable amperometric re-
sponse to pyruvate. Model analysis revealed a significant influence of the substrate diffusion coefficient and the 
thickness of the bioselective membrane on the biosensor’s sensitivity to pyruvate. The responses of the biosensors 
showed high signal reproducibility. The theoretically calculated response curves of the biosensor were in good 
agreement with the experimental data. 
Conclusions. The biosensor is characterized by high sensitivity and reproducibility in pyruvate determination. 
Mathematical modeling enabled rational optimization of the biosensor parameters. The influence of all parameters 
on the biosensor sensitivity decreased in the following order: from the most influential enzymatic reaction rate con-
stant (k), to the substrate diffusion coefficient (DS), to the membrane thickness (L), whereas the effect of the product 
diffusion coefficient (DP) was found to be minimal. 
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Introduction 

Pyruvate (pyruvic acid) is a key intermediate me-
tabolite in cellular energy metabolism, particularly in 
glycolysis, gluconeogenesis, and the tricarboxylic acid 
cycle [1]. Its concentration in biological fluids serves 
as an important diagnostic marker associated with 
metabolic disorders, including lactic acidosis, mito-
chondrial dysfunctions, and certain oncological dis-
eases [2, 3]. Therefore, the development of highly sen-
sitive, selective, and rapid methods for pyruvate de-
termination remains a relevant challenge in analytical 
biochemistry and medical diagnostics. 

Traditional methods for pyruvate analysis, such 
as spectrophotometric, fluorometric, and chromato-
graphic approaches, are widely employed in biochem-
ical studies and clinical diagnostics. However, these 
techniques exhibit several critical limitations: they re-
quire complex and expensive instrumentation, are la-

bor-intensive, involve time-consuming sample prepa-
ration, and often necessitate additional reagents as 
well as multistep procedures. Consequently, such 
methods are not always suitable for real-time moni-
toring of metabolite concentrations or for integration 
into portable diagnostic platforms. These constraints 
underscore the importance of developing novel sens-
ing technologies that combine high sensitivity and se-
lectivity with operational simplicity. 

Among the available methods for pyruvate detec-
tion, amperometric biosensors have gained considera-
ble attention due to their high sensitivity, ease of op-
eration, potential for miniaturization, and compatibil-
ity with portable diagnostic devices [4], advantages 
that are difficult to achieve with conventional analyti-
cal techniques for pyruvate quantification. Biosensors 
based on the enzyme pyruvate oxidase (EC 1.2.3.3) 
enable selective conversion of pyruvate into acetate 
and hydrogen peroxide, the latter being further de-
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tected by amperometric methods [5]. This strategy fa-
cilitates direct electrochemical monitoring of pyruvate 
concentrations in real time. 

In recent years, substantial progress has been 
achieved in immobilization strategies for pyruvate ox-
idase (POx) on transducer surfaces, employing nano-
materials, polymers, and hybrid matrices to enhance 
enzyme stability, electron transfer, and catalytic effi-
ciency [6, 7]. Research efforts have also focused on op-
timizing the enzyme’s operating conditions, including 
pH, temperature, and the presence of cofactors (e.g., 

FAD, TPP, 2
Mg + ), all of which play a critical role in bio-

sensor performance [8]. 
An essential component of modern biosensor de-

velopment is mathematical modeling of enzymatic re-
action kinetics, substrate diffusion, and signal genera-
tion. Modeling enables prediction of biosensor behav-
ior under various conditions, rational optimization of 
sensor design, and interpretation of experimental re-
sults without the need for extensive trial-and-error 
experimentation. A significant contribution to this 
field has been made by the group of Baronas, who 
proposed a series of mathematical models describing 
the non-steady-state behavior of amperometric bio-
sensors, incorporating diffusion limitations, multistep 
enzymatic reactions, and sensor architecture effects 
[9–11]. The application of such models is particularly 
valuable in the early stages of biosensor design, when 
it is crucial to determine optimal membrane thickness, 
enzyme loading, and the configuration of the electro-
chemical transducer. 

In this work, we present the development of a 
procedure for determining and optimizing the param-
eters of a mathematical model of an amperometric bi-
osensor based on immobilized pyruvate oxidase. A 
theoretical study was carried out to evaluate the effect 
of bioselective membrane parameters on the biosen-
sor’s sensitivity to pyruvate.  

 
Materials and Methods 

 
Reagents. Pyruvate oxidase from Aerococcus sp. 

(EC 1.2.3.3) with an activity of 54 U/mg (Sigma-
Aldrich Chimie, USA) was used for the preparation of 
bioselective elements of the biosensors. Sodium py-
ruvate (Sigma-Aldrich Chimie, USA) served as the sub-
strate. Bovine serum albumin (BSA) and glycerol 
(Sigma-Aldrich Chimie, Germany) were also employed 
in membrane fabrication. For enzyme immobilization, 
a photopolymer containing styrylpyridinium groups 
(PVA-SbQ) was used. Other inorganic compounds ap-
plied in this study were of domestic production and of 
analytical grade purity. 

Membrane deposition and immobilization pro-
cedure. A solution was prepared consisting of 10% 
POx, 10% BSA, and 3% glycerol. This mixture was 

combined with a preheated (70 °C) 10% solution of 
the photopolymer. The resulting solution was deposit-
ed on four signal transducers at an average volume of 
0.15 µL per sensor. Biosensor exposure was carried 
out in a Bio-Link BLX-365 chamber under irradiation 
at 365 nm for 2–10 min with an intensity of  20 J/m2 . 

Measurement procedure. The measurements 
were performed according to the methodology de-
scribed in [12]. The biosensors and an /Ag AgCl  refer-

ence electrode (standard single-junction electrode 
filled with 3 M KCl) were connected to a PalmSens po-
tentiostat (Palm Instruments BV, The Netherlands) via 
a multiplexer from the same manufacturer. Measure-
ments were conducted at room temperature in an 
open measuring cell with a volume of 1.5 mL, under 
constant stirring, and at a fixed potential of +0.6 V ver-
sus the /Ag AgCl reference electrode. A 5 mM phos-

phate buffer solution (pH 7.4) containing POx cofac-

tors – magnesium ions (125 µM, 2
Mg + ) and thiamine 

pyrophosphate (TPP, 500 µM) – was used as the work-
ing buffer. For all experimental studies, sodium py-
ruvate was added at a final concentration of 0.1 mM. 

Mathematical modeling and calculations were 
carried out in the MATLAB environment. The parame-
ter estimation was performed using a custom gradi-
ent-descent optimization routine implemented in 
MATLAB, without relying on built-in solvers. Optimi-
zation routine is described in next sections. 

Results 

The kinetics of the enzymatic reaction involving 
pyruvate oxidase can be described using the ping-
pong mechanism (1):    
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whereE  – pyruvate oxidase; S  – pyruvate; 
iP  – the 

corresponding phosphate anion of the multistep reac-
tion; 

1R  – carbon monoxide; 
2R  – acetyl phosphate; 

3R  – hydrogen peroxide. 
1 1 2 3 4 4 5, , , , , ,k k k k k k k− −

 – the 

rates of the corresponding reactions. 
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 0,6

2 2 22 2VH O H O e+ +⎯⎯⎯→ + +  (2) 

In the case when the phosphate and oxygen con-
centrations in the buffer are maintained at a constant 
level and the corresponding constants:

i PP K  

(2.5 > 2.3 mM),
2 MO K  (243 >> 71 μM) and 

SS K  

(0.1 <<9 mM), it is possible to switch from the reaction 
rate according to the ping-pong mechanism to the en-
zymatic reaction rate as a pseudo-first-order rate:  

 
*

max max

2/ / / 1S P i M S

v v S
r kS

K S K P K O K S
= = =

+ + + +
 (3) 

where is 
max  – the maximum reaction rate; ,S iP  and 

2O  are the concentrations of the 1st substrate, the 2nd 

substrate, and the mediator, respectively; ,SK PK  and 

MK  are the Michaelis constants for pyruvate, phos-

phate, and oxygen, respectively. 
The transition from the full ping-pong scheme to 

linear rate in Eq. (3) relies on maintaining phosphate 
and oxygen in excess, resulting in an effective first-
order approximation. Such a linear dependence of the 
reaction rate on the substrate makes it possible to 
write a linearized mathematical model in the form of a 
system of partial differential equations, which in turn 
has an analytical solution. The mathematical model of 
the distribution of chemical compounds in the biose-
lective membrane in this case also loses the trivial 
equations for the concentrations of phosphate and ox-
ygen (assuming that the diffusion coefficients are 
close), so the following reaction-diffusion system can 
be written [10]: 
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where S – pyruvate, P – hydrogen peroxide; 
SD and 

PD  – diffusion coefficients of the substrate and prod-

uct, respectively; and L  – thickness of the protein 
membrane. 

Initial conditions: 

 
0 0( ,0) ( ),  ( ,0) ( )S x S x P x P x= =  (5) 

The boundary conditions for both equations can 
be of either first kind (Neumann) or second kind (Di-
richlet); therefore, we employ the general form of 
third-kind (Robin) boundary conditions, which repre-
sent a linear combination of the first two, but with 
constant coefficients only: 
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Next the given values of the coefficients present-
ed in Table 1 will be used in our case.  

The solution for each concentration distribution 
function consists of a solution for the steady-state 
equation (state) with inhomogeneous boundary condi-
tions (the coefficients сh,g are taken into account) and a 
solution for the transient part with homogeneous 
boundary conditions (the Sturm-Liouville problem). 
Thus, system (4) with conditions (5, 6) has the follow-
ing general solution: 
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where / ,Sk D = 2 ,n S nD k = +  1,2.. ,n = 

2 ,m P mD = 1,2..m =  . 

Modal coupling coefficient: 

 ,

0

( ) ( )

L

n m n mO X x X x dx=   (8) 

Convolution  integral: 
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The degenerate ,n m =  when the convolution 

integral has a solution e mtt
−

−  is taken into account, 

but we will not specifically consider it further. 
Table 1: Robin boundary condition coefficients 

Indices\variable 
a, s-1 b, m/s c, M/s Note 

1st index 2nd index 
S l (left boundary) 0 DS 0 Similar to Neumann condition 

r (right boundary) -1 DS *

bulkS−  Robin condition 

P l (left boundary) 1 0 0 Similar to Dirichlet condition 

r (right boundary) 0 DP 0 Similar to Neumann condition 

* 
bulkS  – the concentration of the analyte in the cell, which is equal to the flux value of the analyte through the membrane surface.
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Eigenfunctions: 

 ( ) sin( ) cos( ), ,j j j j jX x x x j n m   = + =  (10) 

The eigenvalues µj are found from the equation 
obtained by substituting the eigenfunctions (10) into 
the homogeneous boundary conditions: 
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Solution of homogeneous equations (steady 
state) for ( )ssS x і ( )ssP x : 
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The expressions for the coefficients and integra-
tion constants ,s sA B  and 

1 2,C C are found from the sys-

tem obtained by substituting (12) into the boundary 
conditions (6). 

Modal amplitudes 
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The flow of the product 
2 2H O  at the electrode 

surface (x = 0) determines the electric current: 

 ( ) (0, ) (0, )e tr P x ref P xI t n FA D P t G D P t=  =   (15) 

where 2en =  – the number of electrons given up by 

each 
2 2H O  molecule, F – the Faraday constant,  

trA  – the surface area of the electrode. 
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As can be seen, the solution for the hydrogen 
peroxide concentration (and therefore the biosensor 
response) depends on the system parameters 

( ) ( (0 ), , , , )x S P u v wI t f P ,t k,D ,D ,L a b c=  . In this paper, 

we will consider only the influence of the parameters 
{ }S PW k,D ,D ,L . We can obtain analytical expres-

sions for the sensitivity of the product concentration 
with respect to each of the parameters. Given that 

,s sA B  are equal under our conditions (Table 1), we  
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Biosensor sensitivity with respect to 
SD : 
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Biosensor sensitivity with respect to 
PD : 

 ( , ) ( (0, ))
P PD ref D P xI t W G D P t =    (19) 

Biosensor sensitivity with respect to L (resistance): 

 ( , ) ( (0, ))L ref P L xI t W G D P t =    (20) 

The results of the calculations of the sensitivity of 
the biosensor relative to the parameters according to 
formulas (17 – 20) are presented in Fig. 1 – 4. For each 
sensitivity equation, in addition to the variable param-
eter, the following constant values were chosen:  

0 0.1 S = mM, 10

0 0, 4.4 10P k −= =  s-1, 115 10SD
−=  m2/s 

10 24 10РD
−=  m2/s, 40L = μm 

The steady-state sensitivity curves of the biosen-
sor /ssdI dW  are presented in the corresponding  

Fig. 1 – 4 for each parameter from W for comparison 
and evaluation. It should be noted that, since the inte-
gration constant 

1C  depends on all parameters W, the 

sensitivity of the biosensor will likewise depend on 
them. For the chosen values of the coefficients from 
Table 1, in the simplified case: 
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At t→  we have , 0n mE =  and , 0W n mE =  

therefore only the derivative of the product in the 
steady state remains, the general formulas for each of 
biosensor sensitivities with respect to each parameter 
(while all other parameters remain constant) are pre-
sented in Table 2. 

 



Innov Biosyst Bioeng, 2025, vol. 9, no. 4                                                                                                                    50

16    

 

 
Figure 1: Biosensor sensitivity ( , )k I t k relative to the 

pseudo-first-order chemical reaction constant k. Isoline step 
– 10 A∙s 
 
 
 
 

  
Figure 3: Biosensor sensitivity ( , )

PD PI t D  relative to the 

diffusion coefficient – .РD  Isoline step – 1 A∙s/m2 

 
Figure 2: Biosensor sensitivity ( , )

SD SI t D  relative to the 

substrate diffusion coefficient – .SD  Isoline step – 10 A∙s/m2 

 
 
 
 

 
Figure 4: Biosensor sensitivity ( , )LI t L relative to mem-

brane thickness – .L Isoline step – 510− A/m

  
 
Table 2: Biosensor sensitivity functions versus system parameters 

Parameter (W) ,k  s-1 ,SD  m2/s ,PD  m2/s ,L  m 
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Values of a 
function 

92.52 [A∙s] 1219.42 10 SD
− [A∙s/m2] 0 [A∙s/m2] ( )510.65 10 1 SD L− − [A/m] 
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According to the obtained expressions of the par-
tial derivatives of the current (17 – 20) and the cur-
rent equation (15), all parameters W were optimized 
simultaneously by the gradient descent method, min-
imizing the difference:  

 
exp

1

( ( ) ( , ) min
N

i teor i

i

I t I t W
=

− →  (23) 

with the criterion 

 2

1

( ( ) ( )) / (2 1)
N

exp i teor i

i

J I t I t N 
=

= − −   (24) 

where N is the number of discrete measurements of 
one experiment,  is the noise dispersion of experi-

mental data. 
The optimization algorithm implemented in 

MATLAB explicitly computes the analytical sensitivi-

ties ( ),W I t W  at each iteration and updates all pa-

rameters simultaneously using normalized gradient 
expressions. 

For each parameter { }S PW k,D ,D ,L , the update 

rule was: 

1 exp

0

( ( ) ( )) ( )
|| ( ) ||

T

W

n n teor W

W

W W I t I t I t dt
I t


+ = − − 

  (25) 

which corresponds to a normalized steepest-descent 
step. 

Before main routine of simultaneous optimiza-
tion, each of parameter in W was exposed to inde-
pendent optimization with initial conditions of W for 
10 steps. Then those intermediate values used in main 
routine. The algorithm uses same learning rates 

W  

for each parameter everywhere. Maximum values 
0.01W =  for each parameter from W was empirically 

tuned to ensure monotonic reduction of the loss func-
tion J. Convergence was reached when either the loss 
function J dropped below the experimental threshold 

, or when the relative improvement between itera-

tions satisfied: 

 
1| | /n n nJ J J −−   (26) 

For all four sensors within a single experiment, 
the initial parameter values were chosen to be identi-
cal. The diffusion coefficients were taken as the stand-
ard values for aqueous solutions under normal condi-
tions, while the chemical reaction rate constant was 
estimated based on the enzyme content in the enzy-
matic gel with an activity of 5 U/mL. The initial py-
ruvate concentration was set to  0.1bulkS =  mM for all 

experiments. The total simulation time was 360 s, with 
the instrument (PalmSens potentiostat) measurement 
step of 0.3 s. The number of iterations in the algorithm 
was not less than 400. The results of the optimization 
process for the biosensor with four sensors are pre-
sented in Table 3 and corresponding metrics of results 
are in Table 4. 

Based on the obtained parameter values, theoret-
ical responses were calculated using formula (15).  
Fig. 5 shows a comparison of experimental data with 
theoretical current values. 

Next we compare experimental responses to 3 
pyruvate concentrations (0.1 mM, 0.3 mM and 1 mM) 
of 4 biosensors with model theoretical values obtained 
after optimization routine (Fig. 6). 

  

Table 3: Initial and optimal values (mean ± SD) 

Optimization routine 

values 
1110 ,k   s-1 1110 ,SD   m2/s 1010 ,PD   m2/s ,L  μm 

Initial values 6 10 25 30 

Biosensor № 1 5.6±0.18 1.38±0.16 1.28±0.05 30.9±1.0 

Biosensor № 2 7.46 ±0.13 0.95±0.14 0.73±0.06 31.64±0.98 

Biosensor № 3 7.51±0.24 1.19±0.12 0.74±0.12 30.58±1.34 

Biosensor № 4 7.0±0.19 1.19±0.13 0.63±0.09 30.16±0.96 

 

Table 4: Quantitative metrics of results 

Biosensor R² RMSE (A) MAE (A) Pearson r 

1 0.9341 1.45×10–10 1.16×10–10 0.9665 

2 0.9078 2.85×10–10 1.62×10–10 0.9756 

3 0.8649 3.18×10–10 1.79×10–10 0.9630 

4 0.8223 3.49×10–10 2.11×10–10 0.9506 
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Figure 5: Comparison of experimental results (4 typical biosensor responses) with the theoretically calculated current (I) us-

ing the optimized parameters 

 

 
Figure 6: Comparison of experimental responses with theoretical values of 4 biosensors for different concentrations of py-

ruvate   

 
Discussion 

From the standpoint of study design, this work 
combines both experimental and theoretical compo-
nents in a complementary manner. The experimental 
part focused on obtaining reproducible amperometric 
responses of pyruvate oxidase – ased biosensors fabri-
cated under controlled conditions, while the theo- 

retical component aimed to model and predict biosen-
sor performance under various membrane and kinetic 
parameters. Such a dual design ensured that the math-
ematical model could be iteratively validated and re-
fined using real experimental data. The decision to 
study four biosensors fabricated under identical con-
ditions allowed assessment of reproducibility 
and   minimization   of   random   variability     between 
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individual biosensors.  
The selection of pyruvate oxidase as the enzy-

matic element was based on its high substrate specific-
ity and well-characterized reaction mechanism, which 
simplifies the mathematical description and provides 
reliable kinetic constants available in the literature. 
The use of a photopolymer matrix as the immobiliza-
tion medium was motivated by its favorable diffusion 
properties, as well as by previous success in enzyme 
stabilization for long-term biosensor applications. The 
phosphate buffer composition and the inclusion of es-
sential cofactors (Mg2+ and TPP) were taken to main-
tain consistent enzyme activity during both experi-
mental measurements and model calibration. 

Regarding the choice of methods, the am-
perometric technique was selected for its high sensi-
tivity to hydrogen peroxide – the reaction product of 
pyruvate oxidase catalysis – which makes it particular-
ly suitable for quantitative kinetic analysis. The reac-
tion–diffusion mathematical model was preferred be-
cause it provides an analytical representation of sub-
strate and product concentration profiles across the 
bioselective membrane. Moreover, the use of the 
pseudo–first-order approximation was justified for the 
selected range of pyruvate concentrations ( 1S  mM), 

where substrate saturation effects are minimal and 
linearization of the kinetic term significantly simplifies 
the analysis and optimization procedures. For the cal-
culations and simulations, a minimally sufficient num-
ber of modes was employed, n=m=6. To verify results 
calculated from analytical solution for substrate and 
product (7) we apply to system (4 – 6) MATLAB build 
in solver pdepe which use method of lines with varia-
ble-order numerical differentiation formulas with tol-
erance 1∙10-6. Results of comparison of calculation by 
these 2 methods actually differ in 6th digit that con-
firmed expected values from algorithm for analytical 
solution. 

There is known study [13] of ping-pong mecha-
nism for reaction-diffusion system in amperometric 
biosensor model. The gradient descent optimization 
algorithm was chosen for its robustness in finding pa-
rameter sets that minimize the deviation between the-
oretical and experimental current responses. 

The convergence criteria were chosen based on 
the physical characteristics of the biosensor system 
and the numerical properties of the optimization pro-
cess. The first criterion (24) reflects the fact that the 
accuracy of the model fit cannot exceed the intrinsic 
experimental noise level of the amperometric meas-
urement. Once the residual error becomes smaller 
than the noise amplitudes, further adjustments of the 
kinetic and diffusion parameters no longer improve 
the physical fidelity of the model and lead only to nu-
merical overfitting. Therefore, this criterion corre-
sponds to a physically meaningful stopping point: the 
model reproduces the experimental data as accurately 

as actually measurable. The second criterion (26) was 
introduced to detect the plateau region of the optimi-
zation landscape, where successive updates no longer 
produce a meaningful reduction in the loss function. 
The threshold value in (26) was selected empirically 
as the level at which the changes of the loss function 
fall below both: 1) the numerical precision of the sen-
sitivity integrals and 2) the physical variation caused 
by sensor-to-sensor fluctuations. A tighter threshold 
would not affect the final parameters but would signif-
icantly increase computation time; a looser threshold  

( 3 61  0 –10 − −= ) allows premature termination before 

parameter stabilization. For 61  0 400 –500 −=  itera-

tions were typically required before satisfying conver-
gence condition (26) or breaking condition (24), and 

for 51  0 – 90 –100 −= iterations, respectively. Thus, 
61  0 −= provides a balance between computational ef-

ficiency and numerical stability. 
Together, these two criteria ensure that: 1) the fit 

does not attempt to model experimental noise and 2) 
the optimization stops only when further parameter 
changes are insignificant both numerically and physi-
cally. 

To reduce the risk of convergence to a local min-
imum rather than to the global optimum, the optimiza-
tion was performed with four independent initializa-
tions, corresponding to each of the four biosensors 
fabricated under identical conditions. Because the bio-
sensors are nominally identical but differ slightly en-
zyme loading, the initial points for gradient descent 
differ naturally between sensors. Importantly, all four 
optimization runs converged to similar parameter val-
ues (Table 3), indicating the presence of a single dom-
inant global minimum in the parameter landscape for 
the chosen model. Additional tests with randomized 
perturbations of initial conditions (±20% variation 
around the nominal values) yielded the same final pa-
rameters within ±5%. 

Additional analysis was performed to assess the 
robustness of the parameter optimization with respect 
to noise and initial conditions. Introducing ±5% artifi-
cial noise resulted in variations of less than 3–7% in 
the optimized parameters. Perturbing initial parame-
ter guesses by ±20% led to convergence within ±4–6% 
of the original optimum. The coefficients of variation 
across the four biosensors were 12.5% (k), 15.4% (DS), 
21.3% (DP), and 2.9% (L), indicating that the estima-
tion procedure is stable and that the optimized pa-
rameters are reproducible. These results confirm that 
the model reliably identifies physically meaningful pa-
rameters under realistic noise and fabrication variabil-
ity. 

Nevertheless, several limitations of the study 
should be acknowledged. First, the assumption of 
pseudo–first-order kinetics neglects potential nonlin-
ear effects at higher substrate concentrations, which
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 may lead to minor discrepancies in the transient 
phase of biosensor responses. Second, the model as-
sumes uniform enzyme distribution within the mem-
brane and does not explicitly account for enzyme de-
activation, leakage, or microheterogeneity of the pol-
ymer matrix. Third, the study was conducted under 
controlled laboratory conditions (constant tempera-
ture, stirring, and buffer composition), which may dif-
fer from physiological or real-sample environments. 
These factors could influence the absolute values of 
diffusion coefficients and reaction rates. Fourth, the 
correct sensitivity analysis could be done only in small 
region of parameters near initial values and in our 
case, we consider upper limit for parameters from W 
like 10 times of initial values and lower limit as like 
0.01 times of initial values according to trends showed 
on Fig. 1 – 4.  Fifth, the linearization of the reaction 
rate (Eq. 3) imposes a limitation on the substrate con-
centration S that can be accurately analyzed with this 
model. Under the linear-rate approximation with  

,max Sk V K  the model overestimates the Michaelis–

Menten rate by more than 5% at 0.45LIMS = mM, given 

the reported 9SK =  mM (results of biosensor re-

sponses for comparison on Fig. 6 for S = 0.3 mM are 
still in good agreement with theoretical values). 

Comparison of the obtained results with litera-
ture data [11, 12, 14 – 16] confirms that the estimated 
parameters are consistent with values typically re-
ported for oxidase-based enzymatic biosensors. The 
results from Fig. 5 also comparable with study of am-
perometric biosensor [15], where response of biosen-
sor on 0.4 mM of pyruvate at room temperatures was 
in range 4 – 8 nA. In study [16] another biosensor 
demonstrates responses in the range of tens of nA. Ob-
tained currents by (15) are anodic as expected from 
(2). Importantly, mathematical modeling allowed us to 
avoid numerous experimental trials in the develop-
ment and optimization of the biosensor, since the the-
oretical response curves showed good agreement with 
the experimental results. This highlights the potential 
of the developed approaches for predicting sensor be-
havior under varying membrane conditions.  

By applying a pseudo-first-order kinetic model 
for the enzymatic conversion rate, analytical solutions 
and parameter estimations can be obtained. However, 
the pseudo-first-order kinetic model does not allow 
accurate evaluation of the transient state of the sys-
tem, as it does not account for variations in reaction 
rate associated with enzyme saturation by the sub-
strate (in contrast to the Michaelis–Menten model). As 
a result, during the initial seconds of the theoretical 
biosensor response, a linear increase in current is ob-
served, arising both from product accumulation and 
diffusion.  

Thus, at low values of k, the steady-state sensitiv-
ity 

k ssI (W)  remains essentially constant, as observed 

in Fig. 1 (linear dIₛₛ/dk). The steady-state sensitivity 
with respect to the substrate diffusion coefficient DS is 
inversely proportional to its value; for 

SD in the range 

of 12 1110 –10− − m2/s, the corresponding slope (dIss/dDS) 

approaches zero. The steady-state sensitivity to the 
product diffusion coefficient DP is negligible (Figure 3, 
line 

ss PdI dD ), since 
11 – .P PdC dD C D= The steady-

state resistance 
L ssI (W)  has a constant component 

and an additional term inversely proportional to the 
membrane thickness L, while higher-order terms were 
neglected. 

Analysis of Fig. 1 – 4 also allows a deeper as-
sessment of the influence of each key parameter on 
biosensor operation. As seen in Fig. 1, the biosensor 
sensitivity with respect to the reaction rate constant k 
increases linearly over all range of k on 1 A∙s at time 
t=60 s, confirming the critical role of enzymatic activi-
ty in shaping the output signal. This means that in-
creasing the amount of active enzyme in the mem-
brane can achieve higher response values; however, 

there is a limit ( 510k − s-1  and correspondingly 
610maxV  U), beyond which further increase of en-

zyme content is ineffective due to diffusion limitations. 
Fig. 2 shows the dependence of sensitivity on the 

substrate diffusion coefficient (
SD ). At low 

SD values, 

sensitivity is strongly affected, indicating potential dif-
fusion limitations in thick or dense membranes. For 

SD values on the order of 1110− m²/s, the influence be-

comes less pronounced, and the sensor operates clos-
er to a kinetically controlled regime. Therefore, con-
trolling membrane structure (porosity, hydration) is 
an important strategy to improve sensor efficiency. 

Fig. 3 illustrates that the sensitivity with respect 
to the product diffusion coefficient (DP) is effectively 
zero in the steady state. This observation is consistent 
with theoretical calculations and indicates that hydro-
gen peroxide transport from the membrane to the 
electrode does not constitute a limiting step under the 
given conditions. Accordingly, optimization efforts 
should primarily focus on substrate diffusion and the 
enzymatic reaction rate. 

Fig. 4 demonstrates the dependence of sensitivity 
on membrane thickness (L). With increasing thickness, 
the response decreases due to increased mass transfer 
resistance, confirming the critical importance of se-
lecting the sensor’s geometric parameters. Optimal 
performance is achieved using membranes of minimal 
thickness that still maintain mechanical stability and 
do not lead to enzyme leakage. 

The most convincing confirmation of model ade-
quacy is shown in Fig. 5. Here, the theoretically calcu-
lated curves practically coincide with the experimental 
responses for all four electrodes. This demonstrates 
that even the simplified assumption of pseudo-first-
order kinetics is sufficient to describe system behavior 
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in the steady state. Some deviations in the transient 
region are explained by the fact that the model does 
not account for enzyme saturation by substrate during 
the first seconds of the reaction, but in the time range 
above 50 s, the agreement is very high. 

Thus, analysis of the graphical results indicates 
that the mathematical model not only qualitatively de-
scribes sensor operation but also enables quantitative 
predictions necessary for further optimization. This 
confirms the feasibility of integrating experimental 
and theoretical approaches in the design of biosen-
sors. Practical novelty lies in obtaining experimentally 
validated, robustly optimized kinetic and diffusion pa-
rameters for POx-based biosensors, enabling rational 
design decisions without extensive experimental cam-
paigns. 

 
Conclusions 
 
In this work, a procedure for determining and 

optimizing the parameters of a mathematical model of 
an amperometric biosensor based on immobilized py-
ruvate oxidase was developed, aiming to improve the 
analytical characteristics of the sensor and simplify its 
development process. The use of a reaction–diffusion 
mathematical model allowed the optimization of key 
sensor parameters (k, DS, DP, L) and the evaluation of 
their contribution to the formation of the analytical 
signal for pyruvate. 

The obtained results allow us to make the follow-
ing generalized conclusions: 

The investigated biosensor provides a stable and 
reproducible amperometric response to pyruvate, as 
confirmed by the high agreement  between  theoretical 

and experimental data. 
The determined influence of all parameters on 

biosensor sensitivity decreases in the following order: 
from the most influential enzymatic reaction rate con-
stant (k), to the substrate diffusion coefficient (DS), 
and then to the membrane thickness (L), while the ef-
fect of the product diffusion coefficient (DP) was min-
imal. 

The membrane thickness is a critical design pa-
rameter: excessive increase leads to a significant sig-
nal decrease due to mass-transfer limitations. There-
fore, a balance must be found between mechanical 
stability and minimal diffusion resistance. 

Mathematical modeling has proven its effective-
ness as a tool for prediction and optimization, allowing 
minimization of the number of experimental meas-
urements and providing a more rational design of the 
sensor. 

In the future, the developed approach can be ex-
tended to other biosensors based on different enzy-
matic systems. Moreover, the strategy proposed in this 
work, combining experimental and theoretical ap-
proaches, opens new opportunities for the develop-
ment of highly sensitive, selective, and reliable biosen-
sors capable of operating effectively in complex bio-
logical environments. 
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ДОСЛІДЖЕННЯ ПАРАМЕТРІВ ТА ОПТИМІЗАЦІЯ АМПЕРОМЕТРИЧНОГО БІОСЕНСОРА ДЛЯ ВИЗНАЧЕННЯ 
ПІРУВАТУ ЗА ДОПОМОГОЮ МАТЕМАТИЧНОГО МОДЕЛЮВАННЯ 

 

Вступ. Піруват є важливим діагностичним маркером мітохондріальних дисфункцій, лактат-ацидозу та деяких онкологічних за-

хворювань. Традиційні методи аналізу пірувату мають низку суттєвих обмежень: потребують складної апаратури, є трудоміст-
кими, займають значний час підготовки проб. Тому розробка нових, чутливих та селективних методів визначення концентрації 
пірувату є актуальною задачею. 

Мета. Метою роботи було розробити процедуру визначення і оптимізації параметрів математичної моделі амперометричного 
біосенсора на основі іммобілізованої піруватоксидази із застосуванням математичного моделювання дифузійно-реакційних 
процесів. 

Методи. Біосенсор виготовляли з використанням фотополімерної матриці. Аналітичні характеристики біосенсора досліджували 
експериментально.  Розроблено реакційно-дифузійну математичну модель для аналізу чутливості біосенсора до субстрату (пі-
рувату) відносно параметрів системи. Оптимізація цих параметрів здійснювалася методом градієнтного спуску.  

Результати. В роботі було показано, що біосенсор на основі піруват оксидази демонстрував стабільний амперометричний від-
гук на піруват. Аналіз моделі показав суттєвий вплив коефіцієнту дифузії субстрату та товщини біоселективної мембрани на чу-
тливість біосенсора до пірувату. Відгуки чотирьох біосенсорів відзначались високою відтворюваністю сигналів. Теоретичні, роз-

раховані криві сигналів біосенсора добре узгоджувалися з експериментальними даними.  
Висновки. Біосенсор характеризується високою чутливістю та відтворюваністю при визначенні пірувату. Математичне моделю-
вання дозволило здійснити раціональну оптимізацію параметрів даного біосенсора. Визначений вплив усіх параметрів на чут-

ливість біосенсора спадає у такому порядку: від найбільш впливової константи швидкості ферментативної реакції (k), до коефі-
цієнта дифузії субстрату (DS) до товщини мембрани (L), тоді як вплив коефіцієнта дифузії продукту (DP) взагалі був мінімальним. 

Ключові слова: піруват; амперометричний біосенсор; піруватоксидаза; реакційно-дифузійна модель; оптимізація 
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