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Background. Pyruvate serves as an important diagnostic marker of mitochondrial dysfunctions, lactic acidosis, and
certain oncological diseases. Traditional methods for pyruvate analysis have a number of significant limitations:
they require complex equipment, are labor-intensive, involve time-consuming sample preparation. Therefore, the
development of new, sensitive, and selective methods for determining pyruvate concentration is a highly relevant
task.

Objective. The aim of this work was to develop a procedure for the determination and optimization of the parame-
ters of a mathematical model of an amperometric biosensor based on immobilized pyruvate oxidase, employing
mathematical modeling of diffusion-reaction processes.

Methods. The biosensor was fabricated using a photopolymer matrix. The analytical characteristics of the biosensor
were investigated experimentally. Reaction-diffusion mathematical model was developed to analyze the sensitivity
of the biosensor to the substrate (pyruvate) with respect to system parameters. Optimization of these parameters
was performed using the gradient descent method.

Results. The study demonstrated that the pyruvate oxidase-based biosensor exhibited a stable amperometric re-
sponse to pyruvate. Model analysis revealed a significant influence of the substrate diffusion coefficient and the
thickness of the bioselective membrane on the biosensor’s sensitivity to pyruvate. The responses of the biosensors
showed high signal reproducibility. The theoretically calculated response curves of the biosensor were in good
agreement with the experimental data.

Conclusions. The biosensor is characterized by high sensitivity and reproducibility in pyruvate determination.
Mathematical modeling enabled rational optimization of the biosensor parameters. The influence of all parameters
on the biosensor sensitivity decreased in the following order: from the most influential enzymatic reaction rate con-
stant (k), to the substrate diffusion coefficient (Ds), to the membrane thickness (L), whereas the effect of the product
diffusion coefficient (Dr) was found to be minimal.
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Introduction

Pyruvate (pyruvic acid) is a key intermediate me-
tabolite in cellular energy metabolism, particularly in
glycolysis, gluconeogenesis, and the tricarboxylic acid
cycle [1]. Its concentration in biological fluids serves
as an important diagnostic marker associated with
metabolic disorders, including lactic acidosis, mito-
chondrial dysfunctions, and certain oncological dis-
eases [2, 3]. Therefore, the development of highly sen-
sitive, selective, and rapid methods for pyruvate de-
termination remains a relevant challenge in analytical
biochemistry and medical diagnostics.

Traditional methods for pyruvate analysis, such
as spectrophotometric, fluorometric, and chromato-
graphic approaches, are widely employed in biochem-
ical studies and clinical diagnostics. However, these
techniques exhibit several critical limitations: they re-
quire complex and expensive instrumentation, are la-

bor-intensive, involve time-consuming sample prepa-
ration, and often necessitate additional reagents as
well as multistep procedures. Consequently, such
methods are not always suitable for real-time moni-
toring of metabolite concentrations or for integration
into portable diagnostic platforms. These constraints
underscore the importance of developing novel sens-
ing technologies that combine high sensitivity and se-
lectivity with operational simplicity.

Among the available methods for pyruvate detec-
tion, amperometric biosensors have gained considera-
ble attention due to their high sensitivity, ease of op-
eration, potential for miniaturization, and compatibil-
ity with portable diagnostic devices [4], advantages
that are difficult to achieve with conventional analyti-
cal techniques for pyruvate quantification. Biosensors
based on the enzyme pyruvate oxidase (EC 1.2.3.3)
enable selective conversion of pyruvate into acetate
and hydrogen peroxide, the latter being further de-
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tected by amperometric methods [5]. This strategy fa-
cilitates direct electrochemical monitoring of pyruvate
concentrations in real time.

In recent years, substantial progress has been
achieved in immobilization strategies for pyruvate ox-
idase (POx) on transducer surfaces, employing nano-
materials, polymers, and hybrid matrices to enhance
enzyme stability, electron transfer, and catalytic effi-
ciency [6, 7]. Research efforts have also focused on op-
timizing the enzyme’s operating conditions, including
pH, temperature, and the presence of cofactors (e.g.,
FAD, TPP, Mg* ), all of which play a critical role in bio-

sensor performance [8].

An essential component of modern biosensor de-
velopment is mathematical modeling of enzymatic re-
action kinetics, substrate diffusion, and signal genera-
tion. Modeling enables prediction of biosensor behav-
ior under various conditions, rational optimization of
sensor design, and interpretation of experimental re-
sults without the need for extensive trial-and-error
experimentation. A significant contribution to this
field has been made by the group of Baronas, who
proposed a series of mathematical models describing
the non-steady-state behavior of amperometric bio-
sensors, incorporating diffusion limitations, multistep
enzymatic reactions, and sensor architecture effects
[9-11]. The application of such models is particularly
valuable in the early stages of biosensor design, when
it is crucial to determine optimal membrane thickness,
enzyme loading, and the configuration of the electro-
chemical transducer.

In this work, we present the development of a
procedure for determining and optimizing the param-
eters of a mathematical model of an amperometric bi-
osensor based on immobilized pyruvate oxidase. A
theoretical study was carried out to evaluate the effect
of bioselective membrane parameters on the biosen-
sor’s sensitivity to pyruvate.

Materials and Methods

Reagents. Pyruvate oxidase from Aerococcus sp.
(EC 1.2.3.3) with an activity of 54 U/mg (Sigma-
Aldrich Chimie, USA) was used for the preparation of
bioselective elements of the biosensors. Sodium py-
ruvate (Sigma-Aldrich Chimie, USA) served as the sub-
strate. Bovine serum albumin (BSA) and glycerol
(Sigma-Aldrich Chimie, Germany) were also employed
in membrane fabrication. For enzyme immobilization,
a photopolymer containing styrylpyridinium groups
(PVA-SbQ) was used. Other inorganic compounds ap-
plied in this study were of domestic production and of
analytical grade purity.

Membrane deposition and immobilization pro-
cedure. A solution was prepared consisting of 10%
POx, 10% BSA, and 3% glycerol. This mixture was
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combined with a preheated (70 °C) 10% solution of
the photopolymer. The resulting solution was deposit-
ed on four signal transducers at an average volume of
0.15 pL per sensor. Biosensor exposure was carried
out in a Bio-Link BLX-365 chamber under irradiation
at 365 nm for 2-10 min with an intensity of 20 J/m2.
Measurement procedure. The measurements
were performed according to the methodology de-
scribed in [12]. The biosensors and an 4g/4gC! refer-

ence electrode (standard single-junction electrode
filled with 3 M KCI) were connected to a PalmSens po-
tentiostat (Palm Instruments BV, The Netherlands) via
a multiplexer from the same manufacturer. Measure-
ments were conducted at room temperature in an
open measuring cell with a volume of 1.5 mL, under
constant stirring, and at a fixed potential of +0.6 V ver-
sus the Ag/AgCl reference electrode. A 5 mM phos-
phate buffer solution (pH 7.4) containing POx cofac-
tors — magnesium ions (125 pM, Mg* ) and thiamine
pyrophosphate (TPP, 500 uM) - was used as the work-
ing buffer. For all experimental studies, sodium py-
ruvate was added at a final concentration of 0.1 mM.

Mathematical modeling and calculations were
carried out in the MATLAB environment. The parame-
ter estimation was performed using a custom gradi-
ent-descent optimization routine implemented in
MATLAB, without relying on built-in solvers. Optimi-
zation routine is described in next sections.

Results

The kinetics of the enzymatic reaction involving
pyruvate oxidase can be described using the ping-
pong mechanism (1):

S +E-FAD~TPP:<ﬁE-FAD-1acW1—TPP

E-FAD-lactyl -TPP——

—2>E-FAD-2—(a—HE)-TPP+R,

E-FAD-2—(a—HE)-TPP+P,—"—

—% >E-FADH, -TPP+R, (1)

E-FADH,-TPP+0, 7=

:—%>“4E-FADH~(O;’)~TPP+H*

E-FADH -(0;)-TPP+ H" ——

—% SE.FAD-TPP+R,

where E - pyruvate oxidase; S - pyruvate; P, - the

corresponding phosphate anion of the multistep reac-
tion; R, - carbon monoxide; R, - acetyl phosphate;

R, - hydrogen peroxide. &,k .k,,k;,k, .k ,,k; - the
rates of the corresponding reactions.
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In the case when the phosphate and oxygen con-
centrations in the buffer are maintained at a constant

level and the corresponding constants: P >K,
(25>23mM),0,>K,, (243>>71uM)and S <K
(0.1 <<9 mM), it is possible to switch from the reaction

rate according to the ping-pong mechanism to the en-
zymatic reaction rate as a pseudo-first-order rate:

Ks/S+K,/P+K, /0,+1 K¢+§

where is v, - the maximum reaction rate; §, P and
O, are the concentrations of the 1st substrate, the 2nd
substrate, and the mediator, respectively; K, K, and
K

M
phate, and oxygen, respectively.

The transition from the full ping-pong scheme to
linear rate in Eq. (3) relies on maintaining phosphate
and oxygen in excess, resulting in an effective first-
order approximation. Such a linear dependence of the
reaction rate on the substrate makes it possible to
write a linearized mathematical model in the form of a
system of partial differential equations, which in turn
has an analytical solution. The mathematical model of
the distribution of chemical compounds in the biose-
lective membrane in this case also loses the trivial
equations for the concentrations of phosphate and ox-
ygen (assuming that the diffusion coefficients are
close), so the following reaction-diffusion system can
be written [10]:

are the Michaelis constants for pyruvate, phos-

0,S=Ds0 _S—r
0,P=D,0_P+r, (4)
xe(0;L),t>0

where § - pyruvate, P - hydrogen peroxide; Dgand
D, - diffusion coefficients of the substrate and prod-

uct, respectively; and L - thickness of the protein
membrane.
Initial conditions:
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The boundary conditions for both equations can
be of either first kind (Neumann) or second kind (Di-
richlet); therefore, we employ the general form of
third-kind (Robin) boundary conditions, which repre-
sent a linear combination of the first two, but with
constant coefficients only:

ag ,;S(0,6)+b ,0.5(0,t) = cg,
ag S(L,t)+bg . 0,.S(L,t)=cq,
ap,P(0,1)+b,,0 P(0,1)=cp,
ap,P(L,1)+b,,0 P(L,t)=cp,

(6)

Next the given values of the coefficients present-
ed in Table 1 will be used in our case.

The solution for each concentration distribution
function consists of a solution for the steady-state
equation (state) with inhomogeneous boundary condi-
tions (the coefficients cng are taken into account) and a
solution for the transient part with homogeneous
boundary conditions (the Sturm-Liouville problem).
Thus, system (4) with conditions (5, 6) has the follow-
ing general solution:

SCr) =S, (0)+ D AKX, (x)e
n=1

P(x,t) =P (x)+ ) [ADe™ + (7)
m=1
© k490
—mp 1X, (x)
Z} X, Ik "
where A=./k/ Dy, A, =Dy +k, n=1,2..0,
Ay =Dppll, m=1,2.0.
Modal coupling coefficient:
L
0,, = [ X,()-X, (x)dx (8)
0
Convolution integral:
t —Aﬂ,t_ — At
E)l m = J.e_}vm(t_z‘)e_;vnrdf = e e (9)
, 0 ﬂ'n - j’m

The degenerate A, =4,, when the convolution

S(x,0) =Sy (x), P(x,0) = £, (x) (5) integral has a solution —te™™' is taken into account,
but we will not specifically consider it further.
Table 1: Robin boundary condition coefficients
Indices\variable 4
1st index 2nd index as b, m/s ¢, M/s Note

S 1 (left boundary) 0 Ds 0 Similar to Neumann condition
r (right boundary) -1 Ds =S, Robin condition

P 1 (left boundary) 1 0 0 Similar to Dirichlet condition
r (right boundary) 0 Dp 0 Similar to Neumann condition

* Sbulk - the concentration of the analyte in the cell, which is equal to the flux value of the analyte through the membrane surface.
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Eigenfunctions:

X, (x)=a; sin(u,x)+ f; cos(u;x), j =n,m  (10)

The eigenvalues p; are found from the equation

obtained by substituting the eigenfunctions (10) into
the homogeneous boundary conditions:

2
a,a;, +b;b;, 1

i)
(a,.b

tanh(u L) =
! b —a b I,

s Jj=nm  (11)

Solution of homogeneous equations (steady
state) for S (x)i P (x):

S (x)=A.e” +Be ™
ss( ) S N N (12)
P (x)=-D,/D,(4se" + Be ™)+ Cx+C,

The expressions for the coefficients and integra-
tion constants 4, B, and C,,C, are found from the sys-

tem obtained by substituting (12) into the boundary
conditions (6).

Modal amplitudes
1 L
47 = (Sp(x) =S, ()X, (x)dx  (13)
X, H ’
@ __ 1

[(B@-P,)X,0dr  (14)

m
0

S P

The flow of the product H,0, at the electrode
surface (x = 0) determines the electric current:

I(t)=n,FA,D,8 P(0,1)=G,,D,0, P(0,1)

o (15)

where n, =2 - the number of electrons given up by

each H,0, molecule, F- the Faraday constant,

4, - the surface area of the electrode.

0,P(0,0)=0,P,(0)+ Y a,pu,[AVe ™ + > F, 1(16)
m=1

n=1

with 7, =k4¥0, E

B! 11 X, I

As can be seen, the solution for the hydrogen
peroxide concentration (and therefore the biosensor
response) depends on the system parameters
1(t)=f© P(0,¢),kD;,D,,L,a,b,c,). In this paper,
we will consider only the influence of the parameters
WelkDg,D,,L}. We can obtain analytical expres-

sions for the sensitivity of the product concentration
with respect to each of the parameters. Given that
A, B, are equal under our conditions (Table 1), we
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have 0 P (0)=C,(W).

x7 ss

Biosensor sensitivity with respect to k:

akl(t: W) = GrefDP(akCI + Zamﬂm X
m=1 [17)

0 ¢ — At l _ ﬂ, _ — At _ — At
XZ [A,ES)En,m + kA’iS) € ( n m) (62 e )
n=l1 (ln - ﬂ'm )

D

Biosensor sensitivity with respect to D :

0, 1(t,W)=G,,

+Y o, Y kA
m=1 n=1

D,(0,,C, +

! (A’r/ — /,lm ) — (eill”t B ei/i”t )) (18)
(4, =4,)

Biosensor sensitivity with respect to D, :

O, 1(t,W) = G,,0,, (D0 P(0,1)) (19)

Biosensor sensitivity with respect to L (resistance):

o0 1@W)= GrefDPaL (0,P(0,2)) (20)

The results of the calculations of the sensitivity of
the biosensor relative to the parameters according to
formulas (17 - 20) are presented in Fig. 1 - 4. For each
sensitivity equation, in addition to the variable param-
eter, the following constant values were chosen:
S,=0.1 mM, B, =0,k=4.4-10"s1,D, =5-10" m2/s
D, = 24-10""m2/s, L =40pm

The steady-state sensitivity curves of the biosen-
sor dl /dW are presented in the corresponding

Fig. 1 - 4 for each parameter from W for comparison
and evaluation. It should be noted that, since the inte-
gration constant C, depends on all parameters W, the

sensitivity of the biosensor will likewise depend on
them. For the chosen values of the coefficients from
Table 1, in the simplified case:

AS — BS — C.\',Y - ~ CS,Y (21)
2(a,, cosh(AL)+b, Asinh(AL)) 2a,,
24.D cosh(AL)+b Asinh(AL
Cl _ S S(Clp,r (AL) pr (AL)) (22)

D,(La,,+b,,)

At t—oo we have E, =0 and 0,E, A =0

therefore only the derivative of the product in the
steady state remains, the general formulas for each of
biosensor sensitivities with respect to each parameter
(while all other parameters remain constant) are pre-
sented in Table 2.



Innov Biosyst Bioeng, 2025, vol. 9, no. 4 50

diidk, A's diidD, Arsim?
di_/dk 2
sS .
diidD, Asim -
dildk, As

. 80

60

40

20

0

ts 0 10 D, ms
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Table 2: Biosensor sensitivity functions versus system parameters

Parameter (W) k, s1 Dg, m2/s D,, m2/s L, m
G, (DA, (A, —B,))+ i
General G, D,0,CW) G, Do, GW) s D5 MO0, (4 = B)) G,,D,0,(C, + A= Bk
formula C,(W)+D,0, C,(W)) A
S L k b
Partial case 38, L G, 2= — (= +1) kS bv_r 1
0WISS GrefT 2bp,r DS as,r O G”ef DP (1+asr L)
Values of a . 102 . .
function 92.52[As]  1942107/D; [As/m?] 0 [Ars/m?] 10.65-10° -(1- Dy /L) [A/m]
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According to the obtained expressions of the par-
tial derivatives of the current (17 - 20) and the cur-
rent equation (15), all parameters W were optimized
simultaneously by the gradient descent method, min-
imizing the difference:

N
> (U, ()1, (&, W) —> min (23)
i=1

with the criterion
N
J= Z(pr -1, (tl.))2 /QN-1)>¢ (24)
i=1

where N is the number of discrete measurements of
one experiment, ¢is the noise dispersion of experi-
mental data.

The optimization algorithm implemented in
MATLAB explicitly computes the analytical sensitivi-
ties 9,/(¢,W) at each iteration and updates all pa-

rameters simultaneously using normalized gradient
expressions.
For each parameter W e {k D,,D,,L}, the update

rule was:

a T
W, =W, ————| (L, () — 1, ()0, I ()dt (25
. ||0W1<r>||£( ()1, ()0, 1(t)dt (25)

which corresponds to a normalized steepest-descent
step.

Before main routine of simultaneous optimiza-
tion, each of parameter in W was exposed to inde-
pendent optimization with initial conditions of W for
10 steps. Then those intermediate values used in main
routine. The algorithm uses same learning rates ¢,

Table 3: Initial and optimal values (mean * SD)
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for each parameter everywhere. Maximum values
o, =0.01 for each parameter from W was empirically

tuned to ensure monotonic reduction of the loss func-
tion J. Convergence was reached when either the loss
function J dropped below the experimental threshold
g, or when the relative improvement between itera-

tions satisfied:

| Jﬂ _Jnfl | /Jn <7 [26)

For all four sensors within a single experiment,
the initial parameter values were chosen to be identi-
cal. The diffusion coefficients were taken as the stand-
ard values for aqueous solutions under normal condi-
tions, while the chemical reaction rate constant was
estimated based on the enzyme content in the enzy-
matic gel with an activity of 5 U/mL. The initial py-

ruvate concentration was set to §,,, = 0.1 mM for all

experiments. The total simulation time was 360 s, with
the instrument (PalmSens potentiostat) measurement
step of 0.3 s. The number of iterations in the algorithm
was not less than 400. The results of the optimization
process for the biosensor with four sensors are pre-
sented in Table 3 and corresponding metrics of results
are in Table 4.

Based on the obtained parameter values, theoret-
ical responses were calculated using formula (15).
Fig. 5 shows a comparison of experimental data with
theoretical current values.

Next we compare experimental responses to 3
pyruvate concentrations (0.1 mM, 0.3 mM and 1 mM)
of 4 biosensors with model theoretical values obtained
after optimization routine (Fig. 6).

Optimization routine

values k-10", st D, -10", m?/s D, -10", m?/s L, pm
Initial values 6 10 25 30
Biosensor Ne 1 5.6£0.18 1.38+0.16 1.28+0.05 30.9£1.0
Biosensor Ne 2 7.46 £0.13 0.95+0.14 0.73+0.06 31.64+0.98
Biosensor Ne 3 7.51+0.24 1.19+0.12 0.74+0.12 30.58+1.34
Biosensor Ne 4 7.0£0.19 1.19+0.13 0.63+0.09 30.16+£0.96
Table 4: Quantitative metrics of results

Biosensor R? RMSE (A) MAE (A) Pearsonr

1 0.9341 1.45x10-10 1.16x10-10 0.9665

2 0.9078 2.85x10-10 1.62x10-10 0.9756

3 0.8649 3.18x10-10 1.79x10-10 0.9630

4 0.8223 3.49x10-10 2.11x10-10 0.9506
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Figure 5: Comparison of experimental results (4 typical biosensor responses) with the theoretically calculated current () us-
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Figure 6: Comparison of experimental responses with theoretical values of 4 biosensors for different concentrations of py-
ruvate
Discussion retical component aimed to model and predict biosen-

From the standpoint of study design, this work
combines both experimental and theoretical compo-
nents in a complementary manner. The experimental
part focused on obtaining reproducible amperometric
responses of pyruvate oxidase - ased biosensors fabri-
cated under controlled conditions, while the theo-

sor performance under various membrane and Kinetic
parameters. Such a dual design ensured that the math-
ematical model could be iteratively validated and re-
fined using real experimental data. The decision to
study four biosensors fabricated under identical con-
ditions allowed assessment of reproducibility
and minimization of random variability between
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individual biosensors.

The selection of pyruvate oxidase as the enzy-
matic element was based on its high substrate specific-
ity and well-characterized reaction mechanism, which
simplifies the mathematical description and provides
reliable kinetic constants available in the literature.
The use of a photopolymer matrix as the immobiliza-
tion medium was motivated by its favorable diffusion
properties, as well as by previous success in enzyme
stabilization for long-term biosensor applications. The
phosphate buffer composition and the inclusion of es-
sential cofactors (Mg?* and TPP) were taken to main-
tain consistent enzyme activity during both experi-
mental measurements and model calibration.

Regarding the choice of methods, the am-
perometric technique was selected for its high sensi-
tivity to hydrogen peroxide - the reaction product of
pyruvate oxidase catalysis - which makes it particular-
ly suitable for quantitative kinetic analysis. The reac-
tion-diffusion mathematical model was preferred be-
cause it provides an analytical representation of sub-
strate and product concentration profiles across the
bioselective membrane. Moreover, the use of the
pseudo-first-order approximation was justified for the
selected range of pyruvate concentrations (S <1mM),

where substrate saturation effects are minimal and
linearization of the kinetic term significantly simplifies
the analysis and optimization procedures. For the cal-
culations and simulations, a minimally sufficient num-
ber of modes was employed, n=m=6. To verify results
calculated from analytical solution for substrate and
product (7) we apply to system (4 - 6) MATLAB build
in solver pdepe which use method of lines with varia-
ble-order numerical differentiation formulas with tol-
erance 1-10-¢. Results of comparison of calculation by
these 2 methods actually differ in 6th digit that con-
firmed expected values from algorithm for analytical
solution.

There is known study [13] of ping-pong mecha-
nism for reaction-diffusion system in amperometric
biosensor model. The gradient descent optimization
algorithm was chosen for its robustness in finding pa-
rameter sets that minimize the deviation between the-
oretical and experimental current responses.

The convergence criteria were chosen based on
the physical characteristics of the biosensor system
and the numerical properties of the optimization pro-
cess. The first criterion (24) reflects the fact that the
accuracy of the model fit cannot exceed the intrinsic
experimental noise level of the amperometric meas-
urement. Once the residual error becomes smaller
than the noise amplitudes, further adjustments of the
kinetic and diffusion parameters no longer improve
the physical fidelity of the model and lead only to nu-
merical overfitting. Therefore, this criterion corre-
sponds to a physically meaningful stopping point: the
model reproduces the experimental data as accurately
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as actually measurable. The second criterion (26) was
introduced to detect the plateau region of the optimi-
zation landscape, where successive updates no longer
produce a meaningful reduction in the loss function.
The threshold value in (26) was selected empirically
as the level at which the changes of the loss function
fall below both: 1) the numerical precision of the sen-
sitivity integrals and 2) the physical variation caused
by sensor-to-sensor fluctuations. A tighter threshold
would not affect the final parameters but would signif-
icantly increase computation time; a looser threshold
(7=10"—-10"°) allows premature termination before
parameter stabilization. For 7=10" 400—500 itera-

tions were typically required before satisfying conver-
gence condition (26) or breaking condition (24), and
for 7=10"-90-100 iterations, respectively. Thus,

7 =107 provides a balance between computational ef-
ficiency and numerical stability.

Together, these two criteria ensure that: 1) the fit
does not attempt to model experimental noise and 2)
the optimization stops only when further parameter
changes are insignificant both numerically and physi-
cally.

To reduce the risk of convergence to a local min-
imum rather than to the global optimum, the optimiza-
tion was performed with four independent initializa-
tions, corresponding to each of the four biosensors
fabricated under identical conditions. Because the bio-
sensors are nominally identical but differ slightly en-
zyme loading, the initial points for gradient descent
differ naturally between sensors. Importantly, all four
optimization runs converged to similar parameter val-
ues (Table 3), indicating the presence of a single dom-
inant global minimum in the parameter landscape for
the chosen model. Additional tests with randomized
perturbations of initial conditions (*20% variation
around the nominal values) yielded the same final pa-
rameters within +5%.

Additional analysis was performed to assess the
robustness of the parameter optimization with respect
to noise and initial conditions. Introducing +5% artifi-
cial noise resulted in variations of less than 3-7% in
the optimized parameters. Perturbing initial parame-
ter guesses by #20% led to convergence within +4-6%
of the original optimum. The coefficients of variation
across the four biosensors were 12.5% (k), 15.4% (Ds),
21.3% (Dr), and 2.9% (L), indicating that the estima-
tion procedure is stable and that the optimized pa-
rameters are reproducible. These results confirm that
the model reliably identifies physically meaningful pa-
rameters under realistic noise and fabrication variabil-
ity.

Nevertheless, several limitations of the study
should be acknowledged. First, the assumption of
pseudo-first-order kinetics neglects potential nonlin-
ear effects at higher substrate concentrations, which
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may lead to minor discrepancies in the transient
phase of biosensor responses. Second, the model as-
sumes uniform enzyme distribution within the mem-
brane and does not explicitly account for enzyme de-
activation, leakage, or microheterogeneity of the pol-
ymer matrix. Third, the study was conducted under
controlled laboratory conditions (constant tempera-
ture, stirring, and buffer composition), which may dif-
fer from physiological or real-sample environments.
These factors could influence the absolute values of
diffusion coefficients and reaction rates. Fourth, the
correct sensitivity analysis could be done only in small
region of parameters near initial values and in our
case, we consider upper limit for parameters from W
like 10 times of initial values and lower limit as like
0.01 times of initial values according to trends showed
on Fig. 1 - 4. Fifth, the linearization of the reaction
rate (Eq. 3) imposes a limitation on the substrate con-
centration S that can be accurately analyzed with this
model. Under the linear-rate approximation with
k=V, /K, the model overestimates the Michaelis-

max

Menten rate by more than 5% at §,,, = 0.45mM, given
the reported K; =9 mM (results of biosensor re-

sponses for comparison on Fig. 6 for S$ = 0.3 mM are
still in good agreement with theoretical values).

Comparison of the obtained results with litera-
ture data [11, 12, 14 - 16] confirms that the estimated
parameters are consistent with values typically re-
ported for oxidase-based enzymatic biosensors. The
results from Fig. 5 also comparable with study of am-
perometric biosensor [15], where response of biosen-
sor on 0.4 mM of pyruvate at room temperatures was
in range 4 - 8 nA. In study [16] another biosensor
demonstrates responses in the range of tens of nA. Ob-
tained currents by (15) are anodic as expected from
(2). Importantly, mathematical modeling allowed us to
avoid numerous experimental trials in the develop-
ment and optimization of the biosensor, since the the-
oretical response curves showed good agreement with
the experimental results. This highlights the potential
of the developed approaches for predicting sensor be-
havior under varying membrane conditions.

By applying a pseudo-first-order kinetic model
for the enzymatic conversion rate, analytical solutions
and parameter estimations can be obtained. However,
the pseudo-first-order kinetic model does not allow
accurate evaluation of the transient state of the sys-
tem, as it does not account for variations in reaction
rate associated with enzyme saturation by the sub-
strate (in contrast to the Michaelis-Menten model). As
a result, during the initial seconds of the theoretical
biosensor response, a linear increase in current is ob-
served, arising both from product accumulation and
diffusion.

Thus, at low values of k, the steady-state sensitiv-
ity 0,1 (W) remains essentially constant, as observed
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in Fig. 1 (linear dI;;/dk). The steady-state sensitivity
with respect to the substrate diffusion coefficient Ds is
inversely proportional to its value; for Dy in the range

of 10> —10™" m2/s, the corresponding slope (dlss/dDs)
approaches zero. The steady-state sensitivity to the
product diffusion coefficient Dp is negligible (Figure 3,
line dI/dD, ), since dC,/dD, =-C,/D,.The steady-

state resistance 0,/ (W) has a constant component

and an additional term inversely proportional to the
membrane thickness L, while higher-order terms were
neglected.

Analysis of Fig. 1 - 4 also allows a deeper as-
sessment of the influence of each key parameter on
biosensor operation. As seen in Fig. 1, the biosensor
sensitivity with respect to the reaction rate constant k
increases linearly over all range of k on 1 A-s at time
t=60 s, confirming the critical role of enzymatic activi-
ty in shaping the output signal. This means that in-
creasing the amount of active enzyme in the mem-
brane can achieve higher response values; however,
there is a limit (k>>107°s1 and correspondingly

V. >>10°U), beyond which further increase of en-

zyme content is ineffective due to diffusion limitations.
Fig. 2 shows the dependence of sensitivity on the
substrate diffusion coefficient (D; ). Atlow D, values,

sensitivity is strongly affected, indicating potential dif-
fusion limitations in thick or dense membranes. For

D; values on the order of 10™"' m?/s, the influence be-

comes less pronounced, and the sensor operates clos-
er to a kinetically controlled regime. Therefore, con-
trolling membrane structure (porosity, hydration) is
an important strategy to improve sensor efficiency.

Fig. 3 illustrates that the sensitivity with respect
to the product diffusion coefficient (Dp) is effectively
zero in the steady state. This observation is consistent
with theoretical calculations and indicates that hydro-
gen peroxide transport from the membrane to the
electrode does not constitute a limiting step under the
given conditions. Accordingly, optimization efforts
should primarily focus on substrate diffusion and the
enzymatic reaction rate.

Fig. 4 demonstrates the dependence of sensitivity
on membrane thickness (L). With increasing thickness,
the response decreases due to increased mass transfer
resistance, confirming the critical importance of se-
lecting the sensor’s geometric parameters. Optimal
performance is achieved using membranes of minimal
thickness that still maintain mechanical stability and
do not lead to enzyme leakage.

The most convincing confirmation of model ade-
quacy is shown in Fig. 5. Here, the theoretically calcu-
lated curves practically coincide with the experimental
responses for all four electrodes. This demonstrates
that even the simplified assumption of pseudo-first-
order Kkinetics is sufficient to describe system behavior
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in the steady state. Some deviations in the transient
region are explained by the fact that the model does
not account for enzyme saturation by substrate during
the first seconds of the reaction, but in the time range
above 50 s, the agreement is very high.

Thus, analysis of the graphical results indicates
that the mathematical model not only qualitatively de-
scribes sensor operation but also enables quantitative
predictions necessary for further optimization. This
confirms the feasibility of integrating experimental
and theoretical approaches in the design of biosen-
sors. Practical novelty lies in obtaining experimentally
validated, robustly optimized kinetic and diffusion pa-
rameters for POx-based biosensors, enabling rational
design decisions without extensive experimental cam-
paigns.

Conclusions

In this work, a procedure for determining and
optimizing the parameters of a mathematical model of
an amperometric biosensor based on immobilized py-
ruvate oxidase was developed, aiming to improve the
analytical characteristics of the sensor and simplify its
development process. The use of a reaction-diffusion
mathematical model allowed the optimization of key
sensor parameters (k, Ds, Dp, L) and the evaluation of
their contribution to the formation of the analytical
signal for pyruvate.

The obtained results allow us to make the follow-
ing generalized conclusions:

The investigated biosensor provides a stable and
reproducible amperometric response to pyruvate, as
confirmed by the high agreement between theoretical
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and experimental data.

The determined influence of all parameters on
biosensor sensitivity decreases in the following order:
from the most influential enzymatic reaction rate con-
stant (k), to the substrate diffusion coefficient (Ds),
and then to the membrane thickness (L), while the ef-
fect of the product diffusion coefficient (Dr) was min-
imal.

The membrane thickness is a critical design pa-
rameter: excessive increase leads to a significant sig-
nal decrease due to mass-transfer limitations. There-
fore, a balance must be found between mechanical
stability and minimal diffusion resistance.

Mathematical modeling has proven its effective-
ness as a tool for prediction and optimization, allowing
minimization of the number of experimental meas-
urements and providing a more rational design of the
Sensor.

In the future, the developed approach can be ex-
tended to other biosensors based on different enzy-
matic systems. Moreover, the strategy proposed in this
work, combining experimental and theoretical ap-
proaches, opens new opportunities for the develop-
ment of highly sensitive, selective, and reliable biosen-
sors capable of operating effectively in complex bio-
logical environments.
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"IHcTUTYT MonekynsapHoi Gionorii Ta reHeTukn HAH Ykpainu, Kuis, Ykpaina
2KWiBCbKMI NONITEXHIYHWIA IHCTUTYT iMeHi Irops Cikopcbkoro, Kuis, YkpaiHa
3IHCTUTYT aHaniTMYHuX Hayk, YHisepcuteT JlioHa, BinblopbaH, ®paHuis

AOCNIMKEHHA NAPAMETPIB TA ONTUMI3ALUIA AMNEPOMETPUYHOIO BIOCEHCOPA ANA BUSHAYEHHA
NIPYBATY 3A 4OMOMOIr o0 MATEMATUYHOIO MOAEJTIOBAHHA

BceTyn. MipyBaTt € BaXnNMBUM OiarHOCTUYHUM MapKepOM MITOXOHApPIanbHUX OUCAYHKUIN, NakTaT-aunao3y Ta AesKUX OHKOMOriYHUX 3a-
XBOptoBaHb. TpaauuiiHi MeToan aHanisy nipyBaTy MalTb HU3KY CYTTEBUX OOMEXeHb: NoTpebytoTb CKNaaHoi anapaTtypu, € TpyAoMicT-
KMMM, 3aiMatoTb 3HAYHWUI Yac nigrotToBkM nNpob. Tomy po3pobka HOBUX, YYTNMBMX Ta CENEKTUBHMX METOAIB BU3HAYEHHS KOHUEHTpaLii
nipyBaTy € aKkTyarnbHOl 3aJadyeto.

Meta. MeTtoto poboTu Gyno po3pobutu npoueaypy BU3HAYeHHS i onTuMisauii napameTpiB MaTeMaTMyHOT MoAeni amnepoMeTpUYHOro
bioceHcopa Ha OCHOBI iMMOGini3oBaHOi NipyBaToOKCMAA3W i3 3aCTOCYyBaHHSIM MaTeMaTW4YHOrO MOAENOBaHHSA ANGY3iiHO-peaKLinHuX
npovecis.

MeToau. bBioceHcop BUroTOBMANM 3 BUKOPUCTaHHAM dpoTononiMepHoi MaTpuui. AHaniTUYHi xapakTepucTrkm BioceHcopa gocnigxKysanu
ekcnepumMeHTanbHo. Po3pobneHo peakuiiHo-andysiiHy MaTeMaTuyHy MoAenb ANst aHanidy 4yTnuBocTi 6ioceHcopa Ao cybetpaty (ni-
pyBarty) BiiHOCHO napamMeTpiB cuctemu. ONTuMisaLis LMx napameTpiB 34iicHIOBanacs MeToAoM rpafieHTHOro Crycky.

PesynbTaTtn. B poboTi 6yno nokasaHo, Lo 6ioceHcop Ha OCHOBI MipyBaT oKkcuaasu AEMOHCTPYBaB CTabinbHWI aMnepoMeTPUYHUIA Bia-
ryk Ha nipyeaT. AHani3 mogeni nokasaB CyTTEBUI BNNWB koedilieHTy Andysii cybcTpaTy Ta TOBLUMHK GiocenekTuBHOT MembpaHmu Ha Yy-
TnuBicTb BioceHcopa Ao nipyBaTy. Biaryku 4oTupbox GioceHcopiB Big3HaYanuch BUCOKOK BiATBOPOBAHICTIO cUrHanis. TeopeTuyHi, pos-
paxoBaHi KpuBi curHanis 6ioceHcopa Aobpe y3roaxyBanucs 3 eKcrepuMeHTanbHUMU AaHUMU.

BucHoBku. bioceHcop xapakTepuayeTbCa BUCOKOK YyTNMBICTIO Ta BiATBOPIOBAHICTIO MPU BM3HaYeHHI nipyeaTty. MarematnyHe mogenio-
BaHHsI JO3BONWMO 34iNCHUTU palioHanbHy onTuMisauito napameTpiB AaHoro GioceHcopa. BuaHaueHuii BNnmB ycix napameTpiB Ha YyT-
nuBicTb GioceHcopa cnagae y TakoMy NopsiaKy: Bif HaWbinbL BNAVBOBOI KOHCTAHTU LUBUAKOCTI chepMeHTaTUBHOI peakuii (k), Ao koedi-
uieHTa audysii cybeTtpaty (Ds) ao ToBwmHM Membpanu (L), Toai sik Bnnve koediuieHTa andysii npoaykTy (Dp) B3arani 6yB MiHIManbHUM.
Knro4oBi cnoBa: nipysat; amnepomeTpuiHuii GioceHcop; nipyBaTokcmaasa; peakuinHo-andysiinHa Moaernb; onTumisadis
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