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Background. Despite the success in creating vaccines against SARS-CoV-2, the high mutagenicity of coronaviruses,
interspecies transmission, and the emergence of new strains require further search for effective antiviral agents. A
key step in this process is to evaluate the cytotoxicity of potential compounds to determine their safety and thera-
peutic potential. Modern IT solutions, such as automated image analysis and artificial intelligence, increase the accu-
racy and objectivity of assessments.

Objective. To determine the cytotoxicity of compounds with potential anticoronavirus activity and to analyze it us-
ing IT tools.

Methods. The study used the grafting cell line BHK-21 of the gerbil hamster, which was incubated with seven ali-
phatic amino carbon compounds in six concentrations. Cell viability was determined using the MTT assay. Cell mon-
olayer image processing and an exponential dose-response model were used for automated analysis.

Results. The study revealed a pronounced dose- and time-dependent cytotoxicity of most samples, with a maximum
decrease in viability at concentrations above 10 mg/ml. The hormesis effect was recorded at low concentrations (up
to 5-10 mg/ml), which may indicate the activation of cellular defense mechanisms. The high correlation between
measurements at 492 nm and 550 nm (R? > 0.98) confirmed the reliability of the spectrophotometric data. The ex-
ponential model allowed us to approximate the toxicity curves, especially in the middle and high concentration
ranges. The built neural network based on image data and MTT test showed the ability to predict cell viability even
with a limited amount of training data.

Conclusions. The combination of the MTT assay with automated image analysis provides a comprehensive assess-
ment of cytotoxicity. A dose-dependent decrease in cell viability and morphological changes under the influence of
the studied compounds were found. Measurements at 550 nm proved to be more sensitive to early changes in cell
metabolism. The use of IT algorithms has demonstrated the prospects of an automated approach to the screening of
biologically active substances.
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Introduction

Coronaviruses (CoVs) are complex viruses whose
genome is represented by single-stranded unfrag-
mented RNA of positive polarity, which got their name
because of the morphological features of the virion,
whose electron micrograph shows protrusions of sur-
face proteins in the form of a crown. Coronaviruses
mainly cause respiratory and intestinal diseases in
mammals and birds with varying degrees of severity
[1, 2, 3]. The disease outbreaks caused by the SARS-
CoV (2002-2003), MERS-CoV (2012) and SARS-CoV-2
(2019) coronaviruses in the last 20 years have
demonstrated the high threat of these viruses to global
health, which has necessitated the development of

new and study of existing medicines for the preven-
tion and treatment of diseases caused by them [4-6].

Despite significant progress in the development
of vaccines against SARS-CoV-2, the high level of mu-
tability, the emergence of new variants and the possi-
bility of interspecies transmission of coronaviruses
emphasize the need to continue to search for effective
antiviral drugs [7-9].

One of the most promising areas of antiviral drug
development is the study of low molecular weight
compounds, in particular aliphatic amino acids. Ali-
phatic amino acids are important biologically active
molecules that can potentially affect the viral
reproduction cycle by inhibiting its individual
phases or changing metabolic processes in infected
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cells [10-14]. Previous studies have evaluated the an-
tiviral activity of a number of aliphatic amino acids
and their derivatives against the prototypical corona-
virus strain, IBV infectious bronchitis in chickens,
in vitro. It was found that some of the studied sub-
stances, in particular 4-aminobutyric acid and
6-aminocaproic acid, have promising antiviral effects
in non-toxic concentrations and show high values of
the chemotherapeutic index (CTI 2 4) under different
regimens of application [15]. In this research determi-
nation of the valid cytotoxicity level is one of the man-
datory stages of the antiviral drug finding process
[16]. Key method of this stage is the cytotoxicity assay,
which allows one to determine the level of influence of
a substance on cell viability in vitro, which can be
measured as the degree of ability of a substance to
cause cell damage by disrupting or altering its basic
functions [17, 18].

Although cytotoxicity assessment methods are
well established, it remains uncertain whether the re-
sults of cytotoxicity studies for compounds with po-
tential anti-coronavirus activity will be reproducible
under varying experimental conditions - in particular,
when changing detection parameters, using different
types of equipment, or altering the duration of expo-
sure of the substance to cells. This variability in results
may lead to uncertainty in decision-making at subse-
quent stages of investigating these compounds as po-
tential antiviral agents [19-22].

Nowadays, automated tools based on infor-
mation technologies based on neural networks are in-
creasingly replacing routine methods of detecting out-
comes in biomedical research, potentially offering
higher accuracy and simplifying experimental proce-
dures. In particular, modern image processing tech-
niques enable the automated detection of morphologi-
cal changes in cells and cell monolayers caused by test
compounds, significantly reducing the labor intensity
and subjectivity of result interpretation [23-25]. Addi-
tionally, the use of artificial neural networks opens up
possibilities for predicting and assessing compound
toxicity both in large datasets and under conditions of
limited experimental data [26, 27]. However, it is im-
portant to emphasize that such approaches do not
represent expert evaluation in the traditional sense
but are based on algorithmic decision-making. This
raises important concerns regarding model retraining,
potential errors, and reproducibility, especially when
applying IT tools across different experimental set-
tings or to novel compounds. As a result, the validation
of such automated systems against classical methods
remains a critical issue for ensuring the reliability and
credibility of their outputs.

The aim of the study was to evaluate the con-
sistency and reliability of cytotoxicity assessment re-
sults for aliphatic amino acids with potential anti-
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coronavirus activity under varying experimental con-
ditions and detection approaches, including the use of
neural networks.

Materials and Methods

The study used seven aliphatic amino carboxylic
acids and their derivatives in six different concentra-
tions: 50, 20, 10, 5, 2.5, and 1.25 mg/ml (Table 1).

As an experimental in vitro cell model, the graft-
ed substrate-dependent Syrian hamster kidney cell
line BHK-21, obtained from the Museum of Cell Cul-
tures of the R.E. Kavetsky Institute of Experimental Pa-
thology, Oncology and Radiobiology of the National
Academy of Sciences of Ukraine (Kyiv), previously
adapted for virological studies of substances with po-
tential action against coronaviruses, was used [32].

For cell cultivation, RPMI-1640 medium with
L-glutamine and sodium bicarbonate and DMEM with
4500 mg/L glucose, L-glutamine and sodium bicar-
bonate without pyruvate were used. Rostock medium
was prepared by mixing these media in equal propor-
tions with 10% fetal bovine serum and antibiotics
(penicillin - 100 U/ml, streptomycin - 100 pg/ml).
The maintenance medium contained the same compo-
nents but without fetal serum. A 0.02% solution of
ethylenediaminetetraacetic acid (Versene solution)
was used to remove cells from the growth surface.

Cells were cultured in 50 cm?® polystyrene culture
mattresses with a growth surface area of 75 cm?, as
well as in 24- and 96-well cell culture plates with an
adhesive surface. Cells were incubated at 37°C in
5% CO,.

Cytotoxicity testing of the compounds was car-
ried out using 24-hour and 48-hour cell cultures to
evaluate the influence of cell maturity on the repro-
ducibility and reliability of the results. Comparisons
were made between reference monolayers and mono-
layers treated with test samples, which provided an
interpretation of the cytotoxic effects. The analysis
was performed after 24 hours of exposure to the test
substances. To identify potential image deviations,
treated monolayers were compared with reference
monolayers whose cells were not exposed to the test
compounds. Lens magnification in all images was x20.

Most of the methods for assessing in vitro cyto-
toxicity are simple to perform, which ensures their
widespread use in the study of biologically active
compounds [33, 34]. The cytotoxic effect of these sam-
ples was determined by analyzing cell viability using
the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) assay in accordance
with the instructions for the use of Roshe Cell Prolif-
eration Kit I (MTT). In particular, the MTT assay is
currently one of the most common colorimetric meth-
ods and is considered a reference method for
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Table 1: The studied aliphatic amino carboxylic acids and their physicochemical properties [28-31]
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Concentration  The length of Number of Ionization Polarity Solubility Molecular
the aliphatic functional weight,
chain, & groups g/mol

4-amino- 4.62 Amine (-NH3), pH=7.2 The topological Easily soluble in wa- 103.121

butyric acid carboxylic (10 g/L,H,0, areaofthe polar ter, slightly soluble in
(T1) (-COOH) 21.5°Q), surfaceis 63.3 A%  hot ethanol, insoluble
pKa =4.031 in cold ethanol, ether
(25°0) and benzene
5-aminovaleric 6.16 Amine (-NH3), pKa =4.27 The topological Solubility in water: 117.15
acid (T2) carboxylic (25°Q), area of the polar 1000 mg/ml (20°C).
(-COOH) pH=7 surface is 63.3 A2  Solubility order: THF >
carbon tetrachloride >
ethanol > methanol
Hydrochloride 7.70 Amine (-NH,), pKa =4.373 The topological - 167.63
of 6-amino- carboxylic (25°0) area of the polar
caproic acid (-COOH), halo- surface is 63.3 A2
(T3) gen (Cl-)
8-amino- 10.78 Amine (-NH,), pKa =4.89 The topological Solubility in water: 159.23
caproic acid carboxylic (25°C) area of the polar 31 mg/ml (20°C)
(T4) (-COOH) surface is 63.3 A2
7-amino- 9.24 Amine (-NH3), pKa =4.502 The topological Soluble in water 145.20
heptanoic acid carboxylic (25°C) area of the polar
(T5) (-COOH) surface is 127 A2
6-amino- 7.70 Amine (-NH,), pKa =4.373 The topological Solubility in water: 131.17
caproic acid carboxylic (25°C), area of the polar 505.0 mg/mL (25°C)
(T6) (-COOH) pH=7.0-7.5 surfaceis 63.3 A2
(50 g/L, Hz0,
20°C)

Methyl-6- 7.70 Amine (-NH), - The topological Well soluble in water, 181.66
aminocaproic ester (-COO-), area of the polar  chloroform (slightly),
hydrochloride halogen (Cl-) surface is 52.3 A2 methanol (slightly)

(T7)

assessing cytotoxicity or cell viability [35-38]. It is
based on the determination of cell viability by as-
sessing the function of mitochondria, which is as-
sessed by the activity of mitochondrial enzymes, in
particular, succinate dehydrogenase [39]. In this test,
MTT is reduced to purple formazan by NADH. The re-
sulting product can be quantified by measuring the
absorbance of visible light of a specific wavelength
[40, 41]. The optical density (OD) of the solution in the
wells of the plates was measured using a plate spec-
trophotometer at two wavelengths of 550 and 492 nm.
The cell viability was determined 24 and 48 hours af-
ter exposure to the test compounds as a relative de-
crease in OD compared to the reference. This method
is significantly superior to other dye-based methods
because it is easy to use, safe, highly reproducible,
and widely used to deter-mine both cell viability and
cytotoxicity [39, 42].

Traditional approaches to cytotoxicity analysis
are based on calculating the difference between the
average cell viability values in reference and experi-
mental samples within each concentration of the test
substance. The approach we propose extends this con-
cept by identifying all possible options for pairwise

comparison between reference and experimental
samples. This allows for a better assessment of the re-
al variability of the possible toxic effect, especially
when the samples are heterogeneous or contain cer-
tain statistical outliers. This approach is especially rel-
evant in cases where the number of replicates within a
given concentration is limited, as it eliminates the
need to select a specific reference value for compari-
son. The next step was to determine the average value
of the percentage decrease in cell survival, which al-
lowed us to obtain a generalized dose-dependent as-
sessment of cytotoxicity for each specific concentra-
tion of the substance. For further analysis of the dose-
dependent cellular response to each tested compound,
an exponential inhibition model was applied, which is
a standard approach in toxicological studies [43]. This
model allows us to determine the critical points of ex-
posure to the test substance, in particular, the thresh-
old concentrations and their range, in which the max-
imum decrease in cell viability is observed:

AV(C) = AV,

LSy T
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where: AV(C) is the predicted value of the decrease in
cell viability, %, AV is a coefficient that determines
the maximum decrease in cell viability, C - concentra-
tion of the test substance (T1-T7), mg/ml, S is a pa-
rameter of curve steepness (sensitivity of the cell sys-
tem to changes in concentration.

To automate the assessment of changes in the
cell monolayer, the self-designed software "CellCalc"
was developed using the Python programming lan-
guage and artificial intelligence methods (Certificate of
Copyright Registration No. 131305 dated 12.11.2024).
This tool enables automated recognition of cells in mi-
croscopic images, counts their number, and estimates
parameters such as size, area, and other morphologi-
cal characteristics compared to a reference sample.
For the preliminary evaluation of the cytotoxicity of
tested compounds, the Cellpose neural network was
integrated into "CellCalc". A classical Feedforward
model was chosen as the neural network architecture,
consisting of three internal layers of neurons and one
output neuron. The number of neurons in the hidden
layers was selected experimentally, considering the
ratio between the model complexity and the available
amount of training data. ReLu was chosen as the acti-
vation function of the neurons in the inner layers. The
Mean Squared Error (MSE) function was used as a cri-
terion for model quality, which is a standard approach
for regression tasks, and the accuracy was evaluated

using the Mean Absolute Percentage Error (MAPE).

This model demonstrated high segmentation
performance (AP@0.5 = 0.785) during training. Fur-
ther morphological analysis, including cell count and
area estimation, was carried out using algorithms
based on the OpenCV library, a powerful tool for image
processing and computer vision. The performance of
the neural network model largely depends on two key
parameters: the average cell size in pixels and the sen-
sitivity threshold for recognition. A lower threshold al-
lows for the detection of more cells but also increases
the risk of false positives, where noise or artifacts may
be incorrectly identified as cells. Therefore, image
processing parameters were adjusted individually,
taking into account factors such as image scale, quali-
ty, and lighting conditions. Images of the cell layer ob-
tained after treatment with the tested compounds,
along with MTT assay results, served as the foundation
for training a custom neural network aimed at predict-
ing cell viability. The input dataset included infor-
mation on the number, size, and area of cells, as well
as spectrophotometric indicators.

The model's output was a quantitative prediction
of the decrease in cell viability compared to the refer-
ence monolayer. Examples of the initial images and the
results of automated cell recognition by Cellpose are
shown in Fig. 1.

The dataset for neural network training consis-

T3, 50 mg/ml (x20)
Figure 1: An example of image processing of a cell monolayer

Segmented image of T3, 50mg/ml (x20)
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ted of 29 samples. Among them, 24 samples were used
for training and 5 for testing. The training data were
not divided into mini-batches. The overall size of the
training set is substantially limited, since supervised
neural network training typically requires at least
several hundred samples. An insufficient number of
training instances has a markedly negative impact on
the performance of the neural network, potentially
leading to overfitting or inadequate generalization to
new samples.

To solve the prediction task, a fully connected
multilayer  feedforward neural network was
implemented in TensorFlow. The model architecture
consists of four sequential layers. The input layer
receives a feature vector of dimensionality 5. The first
hidden layer contains 200 neurons with ReLU
activation and employs L2 regularization (coefficient
12 = 0.01) to reduce overfitting. The second hidden
layer contains 50 neurons with ReLU activation. The
third hidden layer consists of 8 neurons, also using
ReLU activation. The output layer has 1 neuron
without an activation function, which corresponds to
the formulation of a regression task.

The number of neurons in the hidden layers was
selected experimentally, taking into account the
balance between model complexity and available
training data. The Adam optimizer with a learning rate
of 0.0001 was used for training. Mean Squared Error
(MSE) was applied as the loss function, which is a
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standard approach for regression tasks, and accuracy
was evaluated using Mean Absolute Percentage Error
(MAPE). The neural network was trained for 150
epochs. Due to the small sample size, the validation set
was not used, and the results were evaluated only on
the test subset. The developed model architecture and
its training graph are shown in Fig. 2. As a result of
training the neural network model, MSE of 0.12 and
MAPE of 25.27% were obtained.

Results

The results of the cytotoxicity study of the test
samples allowed us to assess the differences in the
registration of changes in the cell monolayer and cell
viability at two wavelengths - 492 nm and 550 nm af-
ter 24 and 48 hours of exposure. Thus, for the test
sample T1, after 24 hours of exposure, the toxic effect
is less pronounced with different technologies, indicat-
ing possible mechanisms of cell adaptation or insuffi-
cient accumulation of the toxic effect of gamma-
aminobutyric acid (GABA). After exceeding a certain
concentration level (*10 mg/ml), a sharp decrease in
cell viability is observed. The model curves approxi-
mate the experimental data well in the medium and
high concentration range. However, at low concentra-
tions, deviations between the experiment and the
model are observed, which may be due to the variabil-
ity of the biological response of cells (Fig. 3).

Model loss

0.22

0.20

0.18

0.16

0.14

0.12

0.10 ——

0 20 40 60 80 100 120 140
Epoch

(b)

Figure 2: Architecture (a) and training graph (b) of neural network for cell viability prediction



Innov Biosyst Bioeng, 2025, vol. 9, no. 4 33

For the T2 sample, after 24 hours of exposure at  more linear at different wavelengths. A stimulating ef-
low concentrations, a sharp decrease in cell viability is  fect at low concentrations (hormesis effect) is ob-
clearly observed, indicating a high sensitivity of the served after 48 hours, as with the T1 sample. Howev-
cells to the test compound (Fig. 4). In the range from er, with increasing concentration, the toxic effect be-
10 to 50 mg/m], the toxodynamics curve becomes comes more pronounced. The pronounced nonlinear
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nature of the dependence of the toxicity of a com-
pound on its concentration is clearly observe at differ-
ent wavelengths and at different exposure times. Due
to the complex mechanisms of interaction between a
substance and cells, such as the observed hormesis, it
is difficult to approximate the experimental data. Nev-
ertheless, the model reflects the real trend in the toxic
effect of T2 on BHK-21 cells.

The toxicodynamics curves for the T3 sample
demonstrate a characteristic S-shaped (sigmoid) de-
pendence, which 1is typical for concentration-
dependent toxic effects. It is observed that at concen-
trations above 10 mg/ml, the curve reaches a plateau
of cytotoxic effect, indicating maximum cytotoxicity
(Fig. 5).

Comparison of the results at 550 nm and 492 nm
indicate their similarity, and the time points demon-
strate the consistency of the data obtained. The devia-
tions between the experimental results and the math-
ematical model are insignificant and occur mainly at
high concentrations, which may be due to the satura-
tion effect.

Instead, the model curve for T4 (8-amino-caproic
acid) demonstrates a high correspondence to the ex-
perimental data at both wavelengths, indicating the
stability of the results.

As in the previous cases, the general trend of cell
viability decrease depending on the concentration of
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the substance is dose-dependent, however, with a
more pronounced effect at longer exposure. After
48 hours, a more significant decrease in viability was
observed, indicating a cumulative cytotoxic effect or
gradual depletion of the adaptive mechanisms of
BHK-21 cells. At low concentrations (about 5 mg/ml),
there is a temporary increase in viability or no pro-
nounced cytotoxic effect, which may be due to the
adaptive reactions of cells. This feature becomes more
noticeable after 48 hours, which may indicate the acti-
vation of compensatory mechanisms in the early stag-
es of T4 exposure (Fig. 6). At higher concentrations, a
signifi cant decrease in viability is observed, which is
likely caused by accumulation of damage, impaired mi-
tochondrial function, or induction of apoptosis. Thus,
8-aminocaproic acid exhibits time- and dose-
dependent toxicity to the HNSCC-21 cell line.

Similar to T4, test sample T5 (7-amino-
heptanoicacid) exhibits significant cytotoxicity against
HNSC-21 cells, which is dose-dependent and reaches a
maximum at concentrations of approximately
10 mg/ml. Further increase in the concentration of the
test compound does not lead to significant changes in
the cytotoxic effect, indicating that the toxicity plateau
has been reached. Increasing the exposure time to
48 hours leads to stabilization of the cytotoxic effect,
which may indicate the accumulation of toxicity or
depletion of compensatory mechanisms of cells.
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All the experimental curves for T5 are in good cially at 492 nm, where emissions are observed at low
agreement with the mathematical model, although concentrations. After 48 hours of exposure, the toxic
there are slight deviations at some points. The differ- effect stabilizes, and the differences between the mod-
ences between the experimental points and the model el and the experiment become less pronounced (Fig. 7)
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a slight fluctuation in viability at low concentrations of
the test compound (0-10 mg/ml) (Fig. 8). It is ex-
pected that with increasing concentration, there is a
positive trend of decreasing viability, which is qualita-
tively described by the model. In general, the model
reflects the general trends of the experimental data
well. Negative values at the initial concentrations may
indicate metabolic compensation of cells or the stimu-
latory effect of low concentrations. However, at con-
centrations above 20 mg/ml, the most pronounced de-
crease in viability is observed, indicating an increase
in the toxic effect over time. The maximum toxic effect
of T6 is shown at a concentration of 50 mg/ml - 31%
decrease in cell viability. The absorbance values at
492 nm and 550 nm show similar patterns, which in-
dicates the consistency of the MTT test results in both
spectral ranges.

When studying the viability of HNK-21 cells un-
der the influence of the T7 sample, significant changes
in the cell monolayer and a sharp decrease in cell via-
bility were observed in the concentration range from
10 mg/ml, after which the curve reached a plateau.
This effect is clearly observed at different wavelengths
and exposure times (Fig. 9), indicating a significant
stability of the system.

To analyze the correspondence of the results ob-
tained after 24 and 48 hours of exposure, a two-
dimensional scatter plot was constructed (Fig. 10),
which demonstrated the nonlinearity of the data
obtained at different time intervals. Although this
nonlinearity indicates possible complex biological
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mechanisms in the dynamics of the toxic effect, its lev-
el is insignificant. This makes it possible to make a
practical assumption about the equality of results after
24 and 48 hours of exposure.

The results of the analysis between the meas-
urements at 492 nm and 550 nm indicate a high corre-
lation between the values of the percentage of viability
drop measured at 550 nm and 492 nm, both after
24 hours and 48 hours of exposure, which is con-
firmed by high coefficients of determination
(R? > 0.98) (Fig. 11). However, the nature of the re-
gression dependencies is different: for 24 hours the
slope coefficient exceeds 1 (1.22), indicating a higher
sensitivity of the method at 550 nm at the early stages
of cell damage, while for 48 hours the slope is less
than 1 (0.82), i.e,, the drop in viability recorded at
492 nm is more pronounced at a later stage. This is
consistent with the mechanism of action of the MTT
assay, which is based on the metabolic activity of mi-
tochondria: in the early stages, cells are still able to
reduce MTT to formazan, while with prolonged expo-
sure to the toxicant, decreased metabolism, structural
damage, or cell death cause a greater difference in the
values at 492 nm. Thus, the spectrophotometric meas-
urement at 550 nm better reflects early metabolic
changes, while the measurement at 492 nm reflects
later manifestations of toxicity.

When analyzing the results of the neural net
work, we obtained data on the proportion of cellular
area in the images, the total number of cells, and their
average size for each monolayer (Table 2).
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The developed image-based viability assessment
pipeline combines automated segmentation via Cell-
pose with a custom feedforward neural network to
predict relative decreases in cell viability from mor-
phological and spectrophotometric features. These
metrics correspond to an effective predictive accuracy
of approximately 74.7 %, or equivalently a maximum
deviation of +25 % around the true viability reduc-
tion.

Given the limited dataset (n = 29), the allocation

Table 2: Image processing results

of a separate validation subset would further reduce
the effective training sample and lead to unstable pa-
rameter estimation.

Since no validation subset was available, early
stopping could not be implemented, which increases
the risk of overfitting despite applied regularization.
More rigorous assessment methods such as cross-
validation or bootstrapping were not feasible with the
present dataset size.

On the held-out test subset, the error level

Calculated

Test sample Concentration, mg/ml

live cells in the image, %

Calculated number of
live cells in the image, n

percentage of Cell size, pixels

Reference 0 80-89 634-681 97-102
1 20 34-64 228-400 85
50 24-45 163-285 75-85
T2 50 48-55 341-353 58-66
5 52-56 284-347 85-100
T3 10 43-49 342-543 60-80
50 59-62 183-467 60-66
20 16-20 98-117 100-110
b 50 13-17 146-288 50-60
T5 50 28-32 270-294 58-62
Te 10 62-66 335-386 98-101
50 28-33 233-390 50-70
T7 1,25 10-17 295-391 50-60
50 2-3 70-91 30-45
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remained within a similar range (MAPE = 28%), sug-
gesting that the model’s behaviour on these limited
unseen samples does not substantially deviate from its
performance on the training set. However, given the
very small size of the dataset, these results should be
interpreted with caution and cannot be considered a
robust estimate of generalization. Importantly, by in-
tegrating quantitative measures-cell count, size, area-
and spectrophotometric optical density readings into a
unified feature vector, the system yields a robust, im-
age-driven forecast of cytotoxic effect without the
need for extensive manual annotation.

It is important to emphasize that evaluation
based on a single 24/5 train-test split provides only a
preliminary approximation of the model’s generaliza-
tion ability. Such a configuration, although acceptable
for proof-of-concept studies, does not allow obtaining
statistically robust estimates of prediction error and
may underestimate the true variability of model per-
formance on unseen data. The limitations arise direct-
ly from the specifics of in vitro cytotoxicity experi-
ments: each measurement requires individual cultiva-
tion of cell monolayers, controlled incubation with test
compounds, repeated imaging under identical optical
conditions, and parallel spectrophotometric assess-
ment. Under these constraints, collecting large, homo-
geneous, and reproducible image datasets is technical-
ly challenging, labor-intensive, and resource-
demanding, particularly when multiple concentrations
and exposure times must be evaluated simultaneously.

Discussion

In previous studies, the approximate antiviral ac-
tivity of the tested compounds was evaluated under
three in vitro conditions: prophylactic (compound ap-
plied 2 hours before infection), therapeutic and
prophylactic (compound and virus applied simultane-
ously), and therapeutic (compound added 2 hours af-
ter infection). The compounds showed no preventive
activity in the prophylactic mode, even at the highest
concentrations (%CFD = 100%). However, under ther-
apeutic and therapeutic-prophylactic conditions, sev-
eral compounds - particularly T1, T2, T6, and
T7 - demonstrated moderate to high antiviral activity,
with increased efficacy at lower concentrations. The
most pronounced therapeutic effect was observed for
T1, T6, and T7, which significantly reduced the cyto-
pathic effect at moderate doses [32]. A distinctive fea-
ture of the present study is the detailed time-course
evaluation of compound toxicity combined with the
use of information technologies for its analysis. Unlike
conventional approaches, we introduced an integrated
method based on automated image analysis and neu-
ral network algorithms, which enables the combined
use of morphological features (cell count, area, size)
anspectrophotometric MTT measurements with-
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in a single analytical framework for cytotoxicity as-
sessment.

Given the small size of the dataset (n = 29), a
meaningful comparison with baseline methods such as
linear regression, decision trees, or SVR is simply not
feasible. With so few samples, even the most basic
models tend to behave unpredictably: their perfor-
mance can fluctuate substantially from one split to an-
other, and any apparent differences between algo-
rithms mainly reflect the randomness of the sample
rather than real differences in how well the methods
work.

For this reason, we did not aim to rank or identi-
fy the “best” predictive model in this study. Instead,
the neural network was used as a proof-of-concept
tool to demonstrate that heterogeneous morphological
and spectrophotometric data can be integrated within
a single analytical framework, and that such integra-
tion may capture nonlinear patterns that simpler ap-
proaches might miss.

A direct comparison between the variability of
the model’s predictions and the inherent variability of
the MTT assay was not performed in this study. Alt-
hough four technical MTT replicates were obtained for
each concentration, the model was built using only the
averaged optical density values. As a result, the indi-
vidual replicate measurements were not included in
the modelling workflow and cannot be directly com-
pared with the variability of the model outputs.

In addition, a reliable assessment of MTT assay
variability usually requires not only technical repeats
but also independent biological replicates and meas-
urements performed across different plates or exper-
imental runs. Such data were not available within the
scope of this work. For this reason, our focus was on
demonstrating the feasibility of combining morpholog-
ical descriptors with spectrophotometric measure-
ments, rather than on a detailed quantification of pre-
dictive variability relative to the intrinsic noise of the
MTT assay.

The analysis of the dynamics of BHK-21 cell vi-
ability at two different wavelengths, 492 nm and
550 nm, enabled us to evaluate differences in the de-
tection of cytotoxic effects across the test samples.
Overall, cell viability values were consistently slightly
lower at 550 nm compared to 492 nm. These findings
indicate that classical MTT assay methods have limita-
tions in differentiating between early and late stages
of toxic exposure, which may lead to inaccuracies in
identifying threshold concentrations. In contrast, the
application of automated IT-based approaches al-
lowed the detection of more subtle morphological al-
terations in the cell monolayer that are not always re-
flected by metabolic activity but may serve as critical
early predictors of cytotoxicity.

After 24 hours, most of the test samples showed
a similar correlation between their concentration and
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cell viability at both wavelengths. Despite the presence
of certain differences in the results obtained at
492 and 550 nm, the correlation trend remained. This
indicates the stability and homogeneity of the results
obtained.

Since the automated image processing was per-
formed for a 24-hour exposure, a comparison of these
results with the MTT assay data obtained at 24 and
48 hours demonstrated a high level of concordance. In
most samples, a correlation between cell viability and
compound concentration was observed at both time
points, indicating the reproducibility of the results.
This suggests that automated image analysis enables
cytotoxicity prediction with an accuracy of approxi-
mately 75%, making it a viable alternative to classical
methods at the stages of preliminary screening. Such
an approach significantly reduces the duration of the
study and lowers the costs associated with conducting
a full-scale MTT assay.

After 48 hours of exposure, the trends recorded
after 24 hours are maintained. However, for some
samples (T2 and T4), the difference between the
wavelengths decreased, which may indicate a stabili-
zation of the toxic effect over time. In the case of sam-
ples where the difference between the wavelengths is
maintained or even increased, it is possible to assume
the presence of additional factors of influence, such as
the cumulative effect of metabolites of compounds.

Different values of cell viability at different wave-
lengths can be due to different absorption of light by
cells, as they have specific absorption spectra for each
wavelength. It is also worth considering the different
optical properties of cellular components, which can
also change the measurement results at different
wavelengths.

The time course analysis demonstrated a general
increase in the toxic effect after 48 hours in all sam-
ples, indicating a cumulative effect or a gradual disrup-
tion of cellular adaptation mechanisms.

An interesting feature of the data obtained is the
initial increase in cell viability at low concentrations
for T1, T2, T4, and T6, which may indicate the biologi-
cal activity of these compounds in a certain concentra-
tion range. This is especially clearly observed after
48 hours of exposure. For T1, this effect is likely due to
the fact that GABA has antioxidant properties that can
reduce oxidative stress, which has a positive effect on
cell viability [44].

It is also known from the sources that GABA (T1)
can act as an alternative energy source, metabolized
through the GABA shunt to form succinate, which en-
hances mitochondrial activity and oxidative phos-
phorylation [45]. Given this mechanism and the exper-
imental data obtained, it can be assumed that the
presence of a GABA shunt in BHK-21 cells contributes
to the increase in mitochondrial dehydrogenase activi-
ty and, accordingly, affects the MTT test result.
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In general, it can be said that the studied amino
carboxylic compounds have various physicochemical
properties that affect their bioavailability, membrane
permeability, and, as a result, potential cytotoxicity.
Short-chain compounds, such as 4-aminobutyric
(GABA, T1) and 5-aminovaleric acids (T2), are highly
soluble in water due to their high polarity, but their
permeability to lipid environments may be limited, po-
tentially reducing their toxicity [46]. In turn, 6-amino-
hexanoic acid (T3) and 6-aminocaproic acid (T6) have
a longer aliphatic chain, which increases their lipo-
philicity and biological activity [40, 47].

Medium-chain compounds, such as 7-amino-
heptanoic acid (T5) and 8-aminocaprylic acid (T4),
exhibit amphiphilic properties, which facilitates their
interaction with biological membranes [48, 49]. T4 is
particularly characterized by its ability to diffuse into
lipid environments, which may affect its cytotoxic
effect [50]. Methyl-6-aminocapronate hydrochloride
(T7) is a modified compound with high reactivity,
which improves its cell permeability and affects bio-
logical activity.

In general, an increase in carbon chain length and
lipophilicity increases the ability of compounds to
penetrate cell membranes, which can both contribute
to therapeutic effects and increase potential cytotoxi-
city through interaction with membrane structures
and protein complexes [50-52].

Automated image processing of the cell mono-
layer made it possible to assess changes in cell size,
number, and relative total area in the image. In partic-
ular, the correlation between the concentration of the
studied compounds and changes in cell size was the
most revealing, as it indicates toxic effects that cause
changes in cell morphology.

In general, it can be noted that with an increase
in the concentration of the compound, a decrease in
the average cell size is observed. For example, the T1
sample at a concentration of 20 mg/ml shows an aver-
age cell size of 85 pixels, and at a concentration of
50 mg/ml, the size decreases to 75-85 pixels, indicat-
ing a change in cell morphology at a higher concentra-
tion. In the T2 sample at a concentration of 50 mg/ml,
the average cell size is 58-66 pixels, which is a signifi-
cant decrease compared to the reference, where the
average cell size varies between 97-102 pixels.

In the case of T4, no changes in cell morphology
were observed at a concentration of 20 mg/ml com-
pared to the reference, and at a concentration of
50 mg/ml, the cells shrank to 50-60 pixels, which is a
clear example of how increasing the concentration of a
compound can lead to a decrease in cell size, possibly
due to inhibition of cell division or other metabolic
changes.

The data of T3, T5 and T7 samples at concentra-
tions of 10 mg/ml and above show that the cell size
practically does not change, which indicates the stabil-
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ity of cell morphology within these doses. This phe-
nomenon correlates with the plateau effect observed
in the MTT testresults. When the concentration
of compounds increases after a certain threshold
(10 mg/ml or more), changes in cell size are not signif-
icant, and this may indicate that a level has been
reached at which further increases in concentration do
not lead to a proportional decrease in cell size or
changes in cell morphology. Thus, the stability of cell
size in these samples is consistent with the presence of
a saturation effect when further exposure to the com-
pound does not cause significant changes in the cells,
which can also be observed in the results of the MTT
test, where a plateau of efficacy or toxicity is reached.

With increasing concentrations of the studied
compounds, there is also a general tendency to de-
crease both the number of cells and their relative area
in the images. A decrease in the number of cells in the
images also indicates a violation of cellular viability as
a result of the compounds. The downward trend in the
percentage of cells also correlates with the results of
cytotoxicity tests, confirming the negative impact of
elevated concentrations.

Thus, automated image processing is an im-
portant tool for visualizing changes in cell morphology
and cell number under different exposures to the
compounds under study.

It is important to understand that the MTT assay
does not provide detailed information about morpho-
logical changes in cells, including changes in their
shape or size, which can be an important aspect of cy-
totoxicity. In addition, the MTT assay only assesses the
metabolic activity of cells, which may not always be a
correct indicator of cell viability, as some cells may
remain active but be damaged or functionally inactive.
In addition, this method may be sensitive to certain
chemicals that may inhibit tetrazolium reduction, dis-
torting the results.

Instead, automated image processing does not
reflect the metabolic activity of cells, as it only evalu-
ates their physical presence and morphological chang-
es. Also, certain algorithms may have difficulty with
correct segmentation in the presence of cells with
fuzzy contours and poor image quality.

Thus, the combination of image processing and
the MTT assay allows for a comprehensive assessment
of cytotoxicity, combining a detailed analysis of mor-
phological changes in cells with data on their metabol-
ic activity. This approach provides a more accurate
and comprehensive characterization of the effect of
the compounds under study on cell viability.

The use of artificial intelligence algorithms to an-
alyze experimental images opens up new opportuni-
ties for automated cytotoxicity assessment, allowing
not only the identification of cells and classification of
them by the level of damage but also the prediction of
the dynamics of toxic effects in the long term. Auto-

41

mated cell segmentation using neural network models
allows us to effectively analyze changes in the cell
monolayer under the influence of the test substances.

The results of the study confirmed that the com-
bination of traditional methods, in particular the MTT
test, with the analysis of cell morphological changes
using artificial intelligence algorithms improves the in-
terpretation of cytotoxic effects. In particular, the cor-
relation between changes in cell area and cell viability
revealed the dose-dependent nature of the toxic effect
and confirmed the effect of hormesis for some sam-
ples.

In addition, the integration of artificial intelli-
gence into the analysis process allows us to determine
the threshold concentrations at which the cytotoxic ef-
fect of substances begins and calculate CDs, which is a
critical indicator for assessing their safety. The use of
neural networks also opens up opportunities for
building artificial intelligence models that can predict
the potential toxic effects of new compounds based on
the data obtained.

Thus, the introduction of automated cytotoxicity
assays significantly improves the accuracy and repro-
ducibility of experimental studies, reducing the subjec-
tivity of the assessment. This, in turn, can significantly
optimize the process of screening antiviral drugs, re-
ducing the time and resources required for the devel-
opment of new drugs.

To automate and preliminarily assess the cyto-
toxicity of the compounds under study, we employed
an image processing method based on the Cellpose
neural network architecture. This approach enabled
rapid and objective quantification of key morphologi-
cal parameters of the cell monolayer, including cell
number, size, and shape - indicators that are often
sensitive to cytotoxic damage but may not be fully cap-
tured by conventional biochemical assays. For this
purpose, we developed custom software, CellCalc,
which integrates the Cellpose model and provides au-
tomated cell detection, quantification, and estimation
of the relative area of the cell monolayer in compari-
son with control samples.

The use of artificial intelligence for cell segmen-
tation and predictive modeling introduced a new level
of data interpretation. Compared to previously pub-
lished approaches [33-35], which relied primarily on
basic image processing algorithms (e.g., thresholding
or edge detection), our system demonstrated signifi-
cantly improved concordance between morphological
metrics and biochemical test outcomes, such as MTT
assay results. Moreover, the application of neural net-
works significantly reduced the volume of manual
work, minimized user bias, and enhanced the repro-
ducibility and scalability of cytotoxicity assessments.
This methodological advancement facilitates high-
throughput and standardized analysis, making it par-
ticularly valuable for drug screening and toxicit
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profiling.

The neural network it brings together morpho-
logical features of the cell monolayer, quantitative
measurements obtained from image segmentation,
and spectrophotometric MTT readings to produce an
integrated estimate of cytotoxicity. This makes it pos-
sible to account for both metabolic activity and struc-
tural changes in the cell population at the same
time - an aspect that is often difficult to capture with
traditional statistical models, especially when the rela-
tionships between variables are nonlinear. Because
the network works with a multidimensional set of fea-
tures (cell count, area, size, optical density, and oth-
ers), it can approximate these interactions without re-
lying on predefined assumptions about the form of the
dependence.

Another practical advantage of this approach is
the potential to use the model as an early screening
tool before running a full MTT assay. Automated eval-
uation of morphological changes allows researchers to
quickly filter out compounds that are clearly cytotoxic
or unlikely to be of interest, reducing the amount of
experimental work required. Collecting large and con-
sistent in vitro datasets is technically demanding and
resource-intensive, which limits the feasibility of ap-
plying more sophisticated methods at this stage. Even
so, the proposed approach demonstrates the useful-
ness of integrating morphological and metabolic indi-
cators and can serve as a foundation for future devel-
opment of automated systems for cytotoxicity assess-
ment.

Conclusions

A systematic analysis of the cytotoxicity of the
test samples on BHK-21 cells was performed using a
standard MTT assay and automated image processing.
The results obtained allowed us to assess the dynam-
ics of cell viability at different wavelengths, which
made it possible to identify certain differences in the
spectrophotometric determination of cell metabolic
activity. Measurements performed at 550 nm demon-
strated greater sensitivity in detecting early metabolic
changes in cells, making this wavelength preferable for
identifying subtle cytotoxic effects during initial stages
of exposure. It was found that the values of cell viabil-
ity at 550 nm are generally lower, which may be due to
differences in the spectral characteristics of cell com-
ponents. The time course analysis showed an increase
in cytotoxic effects after 48 hours of exposure, which
may indicate the cumulative effect of the studied com-
pounds or a gradual disruption of cellular adaptation
mechanisms. Moreover, a comparative analysis of cy-
totoxicity at 24 and 48 hours revealed that extending
the exposure time to 48 hours did not significantly al-
ter the overall trends in cell viability. This suggests
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that a 24-hour incubation period is sufficient for relia-
ble cytotoxicity assessment, allowing for reduced as-
say duration without compromising result accuracy. In
addition, for some samples, a hormesis effect was rec-
orded, which is manifested in an increase in cell viabil-
ity at low concentrations.

Automated image processing of the cell mono-
layer made it possible to assess changes in cell mor-
phology under the influence of the test samples. A nat-
ural decrease in the average cell size with increasing
concentration of compounds was found, which con-
firms the presence of cytotoxic effects. For some sam-
ples, a plateau effect was recorded when an increase in
concentration did not cause further significant chang-
es in cell morphology, which correlated with the re-
sults of the MTT test. In addition, there was a dose-
dependent decrease in the number of cells and their
percentage in the images, which is consistent with the
cytotoxicity results.

The combination of the MTT assay with comput-
er-based image analysis made it possible to obtain a
more comprehensive view of the effects of the studied
compounds. The developed IT tool and automated al-
gorithms reduced the time and labor required for cy-
totoxicity assessment. With an approximate predictive
accuracy of 75%, the proposed approach may serve as
a cost-effective and reproducible complement to clas-
sical methods, particularly in preliminary or high-
throughput screening of biologically active com-
pounds.

Although the dose-response tendencies and the
indications of possible hormesis observed in the da-
taset appear biologically reasonable, interpretations
based on Al-generated predictions should be ap-
proached with some caution. The neural-network
model used in this work represents an initial proof-of-
concept, and its performance has been evaluated only
within the constraints of the available dataset.

At the same time, this approach enables not only
the estimation of cell viability but also the analysis of
morphological changes, thereby expanding the possi-
bilities for toxicity evaluation. The application of artifi-
cial intelligence to cellular image analysis demon-
strates the potential for developing automated cyto-
toxicity screening tools that could streamline the
study of biologically active compounds and support
the search for new therapeutic agents.
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"KMl im. Irops Cikopcbkoro, Kuis, Ykpaina

2 HauioHanbHMM YHIBEPCUTET OXOPOHM 340p0B’st YKpaiHu im. M.J1. Wynuka, Kuis, YkpaiHa

3 KM «BonuHcbka obnacHa KniHivHa nikapHs», Jlyusk, YkpaiHa

4 BonMHCbKUI HauioHarnbHWin yHiBepeuTeT iM. Jleci YkpaiHku, Nyubk, YkpaiHa

5 HauioHanbHuin HaykoBUI LeHTp dbTuiaTpii, nynbMoHosiorii Ta anepronorii iM. ®. . AHoBCcbKoro HauioHanbHoi akagemii MeanyHnx
Hayk YkpaiHu, Knis, YkpaiHa

8 yuisepcutet Kaccim, Bypaiina, Cayaiscbka Apasis

OLIHKA LLUTOTOKCUYHOCTI ANI®ATUYHUX AMIHOKAPEOHOBUX CMONYK AK NOTEHLIAHUX
NMPOTUKOPOHABIPYCHUX ArEHTIB

Mpobnemaruka. Nonpu ycnixu y cTBOpeHHi BakumH Nnpotn SARS-CoV-2, BuCoka MyTareHHiCTb KOpoHaBipycCiB, MiXXB1AOBa nepefaya Ta
nosiea HOBWX LUTaMiB BUMaratoTb N04asnbLLOro Nowyky eekTBHUX NPOTMBIPYCHMX 3acobiB. KniovoBum eTanom y LiboOMy NpoLueci € oui-
HKa LIMTOTOKCUYHOCTI MOTEHLUIHUX CMONyK, WO [03BOSSE BU3HAUYUTK ixHIO Besneky Ta TepaneBTUYHY MepcnekTuBHICTb. CyyacHi IT-
pilLeHHs, 30KpemMa aBTOMaTU30BaHUIN aHani3 306paXeHb i LUTYYHWUIA iHTeNeKT, NiABULLYI0Tb TOYHICTb Ta 06’ €KTUBHICTb OLHOK.

MeTa. BM3Ha4YMTN LUMTOTOKCUYHICTb CMONYK i3 MOTEHLINHOI aHTUKOPOHAaBIPYCHOIO aKTMBHICTIO Ta NPOBECTU il aHani3 i3 BUKOPUCTaHHAM
IT-3acobiB.

MeToauka peanisauii. Y 4OCnifKeHHi BUKOPUCTAHO NepeLlenniioBanbHy KniTMHHy niHito BHK-21 cipincbkoro xom’siuka, siky iHKyOyBanu 3
ciMmoma anidaTtuyHMMM amiHOKapOOHOBMMMK CMOMlyKaMW B LLUECTU KOHLUeHTpauisx. XXuTTe3gaTHiCTb KNiTUH BM3HA4Yanu 3a 4ONOMOrow
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MTT-TecTty. [ina aBTOMaTM30BaHOro aHarni3y BMKOPUCTOBYBanu obpobKy 306paxeHb KNiTMHHOTO MOHOLLAPY Ta eKCMOHEHLiiHy MoAernb
[0303anexHoi BianoBig,i.

PesynbTati. [locnigpkeHHs BUSIBUIO BUpPaXeHy [030- Ta Yaco3anexHy LUMTOTOKCUMYHICTb BinbLIOCTi 3paskiB, i3 MakCUManbHUM 3HVDKEH-
HSIM XWUTTE3[QATHOCTI NPU KOHUEHTpauisx noHaa 10 mr/mn. 3adikcoBaHO edekT ropMesncy Ha HU3bKMX KOHUEeHTpauisx (4o 5—10 mr/mn),
LLIO MOXe€ CBiAYUTU MPO aKTMBALiIO KNITUHHUX 3aXUCHMX MexaHi3aMiB. Bucoka kopensuig Mix BuMiptoBaHHAMM npu 492 HM Ta 550 HM
(R? > 0,98) nigTBEPAMNa [OCTOBIPHICTE CNEKTPOOTOMETPUYHNX AaHWX. EKCNOHeHUiiHa Mofenb [03BONMUMIa anpoKCMMyBaTU KpUBi TOK-
CWYHOCTI, 0COBNMBO Y CepeHbOMY Ta BMCOKOMY Aianas3oHax KOoHLUeHTpauii. MNobyaoBaHa HelpoHHa Mepexa Ha OCHOBI faHux 306pa-
XeHb Ta MTT-TecTy nokasana 34aTHICTb MPOrHO3YBaTU XUTTE3AATHICTb KNiTUH HaBiTb 32 0OMEXEHOI KiNIbKOCTi HaBYanbHUX AaHUX.
BucHoBku. MNoegHaHHss MTT-TecTy 3 aBTOMaTU30BaHNM aHanisaoMm 306paxeHb 3abesnedye KOMMIEKCHY OLiHKY LIUTOTOKCUYHOCTI. BeTa-
HOBINEHO [0303arexHe 3HWKEHHS XXUTTE3[aTHOCTI KMiTUH Ta MOPAOMOrivHi 3MiHW Nig BNAMBOM AOCHiAXyBaHWUX cnonyk. BumiptoBaHHs
npu 550 HM BUABUNUCB BinbLU YyTNMBMMW A0 PaHHIX 3MiH MeTaboniamy KniTvH. BukopuctanHs IT-anroputmis npoAeMoHCTPyBarno nepc-
NeKTUBHICTb aBTOMaTU30BaHOTO NiAXoAy A0 CKPWHIHTY 6ionoriyHO akTUBHUX PEYOBUH.

KnioyoBi cnoBa: LMTOTOKCUYHICTb; in vitro; amiHokap©&oHoBi cnonyku; MTT-TecT; 06pobka 306pakeHb; HEMPOHHA Mepexa.



