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Background. Despite the success in creating vaccines against SARS-CoV-2, the high mutagenicity of coronaviruses, 
interspecies transmission, and the emergence of new strains require further search for effective antiviral agents. A 
key step in this process is to evaluate the cytotoxicity of potential compounds to determine their safety and thera-
peutic potential. Modern IT solutions, such as automated image analysis and artificial intelligence, increase the accu-
racy and objectivity of assessments.  
Objective. To determine the cytotoxicity of compounds with potential anticoronavirus activity and to analyze it us-
ing IТ tools.  
Methods. The study used the grafting cell line BHK-21 of the gerbil hamster, which was incubated with seven ali-
phatic amino carbon compounds in six concentrations. Cell viability was determined using the MTT assay. Cell mon-
olayer image processing and an exponential dose-response model were used for automated analysis.  
Results. The study revealed a pronounced dose- and time-dependent cytotoxicity of most samples, with a maximum 
decrease in viability at concentrations above 10 mg/ml. The hormesis effect was recorded at low concentrations (up 
to 5–10 mg/ml), which may indicate the activation of cellular defense mechanisms. The high correlation between 
measurements at 492 nm and 550 nm (R² > 0.98) confirmed the reliability of the spectrophotometric data. The ex-
ponential model allowed us to approximate the toxicity curves, especially in the middle and high concentration 
ranges. The built neural network based on image data and MTT test showed the ability to predict cell viability even 
with a limited amount of training data.  
Conclusions. The combination of the MTT assay with automated image analysis provides a comprehensive assess-
ment of cytotoxicity. A dose-dependent decrease in cell viability and morphological changes under the influence of 
the studied compounds were found. Measurements at 550 nm proved to be more sensitive to early changes in cell 
metabolism. The use of ІТ algorithms has demonstrated the prospects of an automated approach to the screening of 
biologically active substances. 
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Introduction 

Coronaviruses (CoVs) are complex viruses whose 
genome is represented by single-stranded unfrag-
mented RNA of positive polarity, which got their name 
because of the morphological features of the virion, 
whose electron micrograph shows protrusions of sur-
face proteins in the form of a crown. Coronaviruses 
mainly cause respiratory and intestinal diseases in 
mammals and birds with varying degrees of severity 
[1, 2, 3]. The disease outbreaks caused by the SARS-
CoV (2002–2003), MERS-CoV (2012) and SARS-CoV-2 
(2019) coronaviruses in the last 20 years have 
demonstrated the high threat of these viruses to global 
health, which has necessitated the development of 

new and study of existing medicines for the preven-
tion and treatment of diseases caused by them [4–6].  

Despite significant progress in the development 
of vaccines against SARS-CoV-2, the high level of mu-
tability, the emergence of new variants and the possi-
bility of interspecies transmission of coronaviruses 
emphasize the need to continue to search for effective 
antiviral drugs [7–9].  

One of the most promising areas of antiviral drug 
development is the study of low molecular weight 
compounds, in particular aliphatic amino acids. Ali-
phatic amino acids are important biologically active 
molecules that can potentially affect the viral 
reproduction cycle by inhibiting its individual  
phases or changing metabolic processes in infected 
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cells [10–14]. Previous studies have evaluated the an-
tiviral activity of a number of aliphatic amino acids 
and their derivatives against the prototypical corona-
virus strain, IBV infectious bronchitis in chickens,  
in vitro. It was found that some of the studied sub-
stances, in particular 4-aminobutyric acid and  
6-aminocaproic acid, have promising antiviral effects 
in non-toxic concentrations and show high values of 
the chemotherapeutic index (CTI ≥ 4) under different 
regimens of application [15]. In this research determi-
nation of the valid cytotoxicity level is one of the man-
datory stages of the antiviral drug finding process 
[16]. Key method of this stage is the cytotoxicity assay, 
which allows one to determine the level of influence of 
a substance on cell viability in vitro, which can be 
measured as the degree of ability of a substance to 
cause cell damage by disrupting or altering its basic 
functions [17, 18].  

Although cytotoxicity assessment methods are 
well established, it remains uncertain whether the re-
sults of cytotoxicity studies for compounds with po-
tential anti-coronavirus activity will be reproducible 
under varying experimental conditions – in particular, 
when changing detection parameters, using different 
types of equipment, or altering the duration of expo-
sure of the substance to cells. This variability in results 
may lead to uncertainty in decision-making at subse-
quent stages of investigating these compounds as po-
tential antiviral agents [19–22]. 

Nowadays, automated tools based on infor-
mation technologies based on neural networks are in-
creasingly replacing routine methods of detecting out-
comes in biomedical research, potentially offering 
higher accuracy and simplifying experimental proce-
dures. In particular, modern image processing tech-
niques enable the automated detection of morphologi-
cal changes in cells and cell monolayers caused by test 
compounds, significantly reducing the labor intensity 
and subjectivity of result interpretation [23–25]. Addi-
tionally, the use of artificial neural networks opens up 
possibilities for predicting and assessing compound 
toxicity both in large datasets and under conditions of 
limited experimental data [26, 27]. However, it is im-
portant to emphasize that such approaches do not 
represent expert evaluation in the traditional sense 
but are based on algorithmic decision-making. This 
raises important concerns regarding model retraining, 
potential errors, and reproducibility, especially when 
applying IT tools across different experimental set-
tings or to novel compounds. As a result, the validation 
of such automated systems against classical methods 
remains a critical issue for ensuring the reliability and 
credibility of their outputs. 

The aim of the study was to evaluate the con-
sistency and reliability of cytotoxicity assessment re-
sults for aliphatic amino acids with potential anti-

coronavirus activity under varying experimental con-
ditions and detection approaches, including the use of 
neural networks. 

Materials and Methods 

The study used seven aliphatic amino carboxylic 
acids and their derivatives in six different concentra-
tions: 50, 20, 10, 5, 2.5, and 1.25 mg/ml (Table 1).  

As an experimental in vitro cell model, the graft-
ed substrate-dependent Syrian hamster kidney cell 
line BHK-21, obtained from the Museum of Cell Cul-
tures of the R.E. Kavetsky Institute of Experimental Pa-
thology, Oncology and Radiobiology of the National 
Academy of Sciences of Ukraine (Kyiv), previously 
adapted for virological studies of substances with po-
tential action against coronaviruses, was used [32].  

For  cell  cultivation, RPMI-1640  medium  with 
L-glutamine and sodium bicarbonate and DMEM with 
4500 mg/L glucose, L-glutamine and sodium bicar-
bonate without pyruvate were used. Rostock medium 
was prepared by mixing these media in equal propor-
tions with 10% fetal bovine serum and antibiotics 
(penicillin – 100 U/ml, streptomycin – 100 μg/ml). 
The maintenance medium contained the same compo-
nents but without fetal serum. A 0.02% solution of 
ethylenediaminetetraacetic acid (Versene solution) 
was used to remove cells from the growth surface.  

Cells were cultured in 50 cm³ polystyrene culture 
mattresses with a growth surface area of 75 cm², as 
well as in 24- and 96-well cell culture plates with an 
adhesive surface. Cells were incubated at 37°C in  
5% CO₂.  

Cytotoxicity testing of the compounds was car-
ried out using 24-hour and 48-hour cell cultures to 
evaluate the influence of cell maturity on the repro-
ducibility and reliability of the results. Comparisons 
were made between reference monolayers and mono-
layers treated with test samples, which provided an 
interpretation of the cytotoxic effects. The analysis 
was performed after 24 hours of exposure to the test 
substances. To identify potential image deviations, 
treated monolayers were compared with reference 
monolayers whose cells were not exposed to the test 
compounds. Lens magnification in all images was ×20.  

Most of the methods for assessing in vitro cyto-
toxicity are simple to perform, which ensures their 
widespread use in the study of biologically active 
compounds [33, 34]. The cytotoxic effect of these sam-
ples was determined by analyzing cell viability using 
the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) assay in accordance 
with the instructions for the use of Roshe Cell Prolif-
eration Kit I (MTT). In particular, the MTT assay is 
currently one of the most common colorimetric meth-
ods and is considered a reference method for
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Table 1: The studied aliphatic amino carboxylic acids and their physicochemical properties [28–31]  
Сoncentration The length of 

the aliphatic 
chain, å 

Number of 
functional 

groups 

Ionization Polarity Solubility Molecular 
weight, 
g/mol 

4-amino–
butyric acid 

(T1) 

4.62 Amine (-NH₂), 
carboxylic  
(-COOH) 

pH = 7.2  
(10 g/L, H₂O, 

21.5°C),  
pKa = 4.031 

(25°C) 

The topological 
area of the polar 
surface is 63.3 Å² 

Easily soluble in wa-
ter, slightly soluble in 
hot ethanol, insoluble 
in cold ethanol, ether 

and benzene 

103.121 

5-aminovaleric 
acid (T2) 

6.16 Amine (-NH₂), 
carboxylic  
(-COOH) 

pKa = 4.27 
(25°C),  
pH = 7 

The topological 
area of the polar 
surface is 63.3 Å² 

Solubility in water: 
1000 mg/ml (20°C). 

Solubility order: THF > 
carbon tetrachloride > 

ethanol > methanol 

117.15 

Hydrochloride 
of 6-amino–
caproic acid 

(T3) 

7.70 Amine (-NH₂), 
carboxylic  

(-COOH), halo-
gen (Cl-) 

pKa = 4.373 
(25°C) 

The topological 
area of the polar 
surface is 63.3 Å² 

- 167.63 

8-amino–
caproic acid 

(T4) 

10.78 Amine (-NH₂), 
carboxylic  
(-COOH) 

pKa = 4.89 
(25°C) 

The topological 
area of the polar 
surface is 63.3 Å² 

Solubility in water:  
31 mg/ml (20°C) 

159.23 

7-amino–
heptanoic acid 

(T5) 

9.24 Amine (-NH₂), 
carboxylic  
(-COOH) 

pKa = 4.502 
(25°C) 

The topological 
area of the polar 
surface is 127 Å² 

Soluble in water 145.20 

6-amino–
caproic acid 

(T6) 

7.70 Amine (-NH₂), 
carboxylic  
(-COOH) 

pKa = 4.373 
(25°C),  

pH = 7.0-7.5 
(50 g/L, H₂O, 

20°C) 

The topological 
area of the polar 
surface is 63.3 Å² 

Solubility in water: 
505.0 mg/mL (25°C) 

131.17 

Methyl-6-
aminocaproic 
hydrochloride 

(T7) 

7.70 Amine (-NH₂), 
ester (-COO-), 
halogen (Cl-) 

- The topological 
area of the polar 
surface is 52.3 Å² 

Well soluble in water, 
chloroform (slightly), 

methanol (slightly) 

181.66 

 

assessing cytotoxicity or cell viability [35–38]. It is 
based on the determination of cell viability by as-
sessing the function of mitochondria, which is as-
sessed by the activity of mitochondrial enzymes, in 
particular, succinate dehydrogenase [39]. In this test, 
MTT is reduced to purple formazan by NADH. The re-
sulting product can be quantified by measuring the 
absorbance of visible light of a specific wavelength 
[40, 41]. The optical density (OD) of the solution in the 
wells of the plates was measured using a plate spec-
trophotometer at two wavelengths of 550 and 492 nm. 
The cell viability was determined 24 and 48 hours af-
ter exposure to the test compounds as a relative de-
crease in OD compared to the reference. This method 
is significantly superior to other dye-based methods 
because it is easy to use, safe,  highly  reproducible,  
and  widely  used  to  deter-mine both cell viability and 
cytotoxicity [39, 42].  

Traditional approaches to cytotoxicity analysis 
are based on calculating the difference between the 
average cell viability values in reference and experi-
mental samples within each concentration of the test 
substance. The approach we propose extends this con-
cept by identifying all possible options for pairwise 

comparison between reference and experimental 
samples. This allows for a better assessment of the re-
al variability of the possible toxic effect, especially 
when the samples are heterogeneous or contain cer-
tain statistical outliers. This approach is especially rel-
evant in cases where the number of replicates within a 
given concentration is limited, as it eliminates the 
need to select a specific reference value for compari-
son. The next step was to determine the average value 
of the percentage decrease in cell survival, which al-
lowed us to obtain a generalized dose-dependent as-
sessment of cytotoxicity for each specific concentra-
tion of the substance. For further analysis of the dose-
dependent cellular response to each tested compound, 
an exponential inhibition model was applied, which is 
a standard approach in toxicological studies [43]. This 
model allows us to determine the critical points of ex-
posure to the test substance, in particular, the thresh-
old concentrations and their range, in which the max-
imum decrease in cell viability is observed:  

 

max

0
( )

( ( ))
1

V
V C V

S C A
e


 = − 

− −
+

 



 Innov Biosyst Bioeng, 2025, vol. 9, no. 4                                                                                                                    31

15    

where: ΔV(C) is the predicted value of the decrease in 
cell viability, %, ΔVmax is a coefficient that determines 
the maximum decrease in cell viability, C – concentra-
tion of the test substance (T1-T7), mg/ml, S is a pa-
rameter of curve steepness (sensitivity of the cell sys-
tem to changes in concentration. 

To automate the assessment of changes in the 
cell monolayer, the self-designed software "CellCalc" 
was developed using the Python programming lan-
guage and artificial intelligence methods (Certificate of 
Copyright Registration No. 131305 dated 12.11.2024). 
This tool enables automated recognition of cells in mi-
croscopic images, counts their number, and estimates 
parameters such as size, area, and other morphologi-
cal characteristics compared to a reference sample. 
For the preliminary evaluation of the cytotoxicity of 
tested compounds, the Cellpose neural network was 
integrated into "CellCalc". A classical Feedforward 
model was chosen as the neural network architecture, 
consisting of three internal layers of neurons and one 
output neuron. The number of neurons in the hidden 
layers was selected experimentally, considering the 
ratio between the model complexity and the available 
amount of training data. ReLu was chosen as the acti-
vation function of the neurons in the inner layers. The 
Mean Squared Error (MSE) function was used as a cri-
terion for model quality, which is a standard approach 
for regression  tasks, and  the  accuracy  was evaluated 

 

using the Mean Absolute Percentage Error (MAPE). 
This model demonstrated high segmentation 

performance (AP@0.5 = 0.785) during training. Fur-
ther morphological analysis, including cell count and 
area estimation, was carried out using algorithms 
based on the OpenCV library, a powerful tool for image 
processing and computer vision. The performance of 
the neural network model largely depends on two key 
parameters: the average cell size in pixels and the sen-
sitivity threshold for recognition. A lower threshold al-
lows for the detection of more cells but also increases 
the risk of false positives, where noise or artifacts may 
be incorrectly identified as cells. Therefore, image 
processing parameters were adjusted individually, 
taking into account factors such as image scale, quali-
ty, and lighting conditions. Images of the cell layer ob-
tained after treatment with the tested compounds, 
along with MTT assay results, served as the foundation 
for training a custom neural network aimed at predict-
ing cell viability. The input dataset included infor-
mation on the number, size, and area of cells, as well 
as spectrophotometric indicators.  

The model's output was a quantitative prediction 
of the decrease in cell viability compared to the refer-
ence monolayer. Examples of the initial images and the 
results of automated cell recognition by Cellpose are 
shown in Fig. 1.  

The  dataset for neural network   training  consis- 
 

 

  

            Reference monolayer (x20) Segmented image of the reference monolayer 

  

                  T3, 50 mg/ml (x20) Segmented image of T3, 50mg/ml (x20) 

Figure 1: An example of image processing of a cell monolayer 
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ted of 29 samples. Among them, 24 samples were used 
for training and 5 for testing. The training data were 
not divided into mini-batches. The overall size of the 
training set is substantially limited, since supervised 
neural network training typically requires at least 
several hundred samples. An insufficient number of 
training instances has a markedly negative impact on 
the performance of the neural network, potentially 
leading to overfitting or inadequate generalization to 
new samples. 

To solve the prediction task, a fully connected 
multilayer feedforward neural network was 
implemented in TensorFlow. The model architecture 
consists of four sequential layers. The input layer 
receives a feature vector of dimensionality 5. The first 
hidden layer contains 200 neurons with ReLU 
activation and employs L2 regularization (coefficient 
l2 = 0.01) to reduce overfitting. The second hidden 
layer contains 50 neurons with ReLU activation. The 
third hidden layer consists of 8 neurons, also using 
ReLU activation. The output layer has 1 neuron 
without an activation function, which corresponds to 
the formulation of a regression task. 

The number of neurons in the hidden layers was 
selected experimentally, taking into account the 
balance between model complexity and available 
training data. The Adam optimizer with a learning rate 
of 0.0001 was used for training. Mean Squared Error 
(MSE) was applied as the loss function, which is a 

standard approach for regression tasks, and accuracy 
was evaluated using Mean Absolute Percentage Error 
(MAPE). The neural network was trained for 150 
epochs. Due to the small sample size, the validation set 
was not used, and the results were evaluated only on 
the test subset. The developed model architecture and 
its training graph are shown in Fig. 2. As a result of 
training the neural network model, MSE of 0.12 and 
MAPE of 25.27% were obtained.  

Results 

The results of the cytotoxicity study of the test 
samples allowed us to assess the differences in the 
registration of changes in the cell monolayer and cell 
viability at two wavelengths – 492 nm and 550 nm af-
ter 24 and 48 hours of exposure. Thus, for the test 
sample T1, after 24 hours of exposure, the toxic effect 
is less pronounced with different technologies, indicat-
ing possible mechanisms of cell adaptation or insuffi-
cient accumulation of the toxic effect of gamma-
aminobutyric acid (GABA).   After exceeding a certain 
concentration level (≈10 mg/ml), a sharp decrease in 
cell viability is observed. The model curves approxi-
mate the experimental data well in the medium and 
high concentration range. However, at low concentra-
tions, deviations between the experiment and the 
model are observed, which may be due to the  variabil-
ity of the biological response of cells (Fig. 3).  

 

 

(a) (b) 

Figure 2: Architecture (a) and training graph (b) of neural network for cell viability prediction 
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For the T2 sample, after 24 hours of exposure at 
low concentrations, a sharp decrease in cell viability is 
clearly observed, indicating a high sensitivity of the 
cells to the test compound (Fig. 4). In the range from 
10 to 50 mg/ml, the toxodynamics curve becomes 

more linear at different wavelengths. A stimulating ef-
fect at low concentrations (hormesis effect) is ob-
served after 48 hours, as with the T1 sample. Howev-
er, with increasing concentration, the toxic effect be-
comes more pronounced. The pronounced nonlinear

 

  
24 hours, 550 nm 24 hours, 492nm 

  

48 hours, 550 nm 48 hours, 492 nm 

Figure 3: Toxicity dynamics for T1 

 

  
24 hours, 550 nm 24 hours, 492 nm 

  
48 hours, 550 nm 48 hours, 492 nm 

Figure 4: Dynamics of T2 toxicity 
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nature of the dependence of the toxicity of a com-
pound on its concentration is clearly observe at differ-
ent wavelengths and at different exposure times. Due 
to the complex mechanisms of interaction between a 
substance and cells, such as the observed hormesis, it 
is difficult to approximate the experimental data. Nev-
ertheless, the model reflects the real trend in the toxic 
effect of T2 on BHK-21 cells. 

The toxicodynamics curves for the T3 sample 
demonstrate a characteristic S-shaped (sigmoid) de-
pendence, which is typical for concentration-
dependent toxic effects. It is observed that at concen-
trations above 10 mg/ml, the curve reaches a plateau 
of cytotoxic effect, indicating maximum cytotoxicity 
(Fig. 5).  

Comparison of the results at  550 nm and 492 nm 
indicate their similarity, and the time points demon-
strate the consistency of the data obtained. The devia-
tions between the experimental results and the math-
ematical model are insignificant and occur mainly at 
high concentrations, which may be due to the satura-
tion effect. 

Instead, the model curve for T4 (8-amino-caproic 
acid) demonstrates a high correspondence to the ex-
perimental data at both wavelengths, indicating the 
stability of the results.  

As in the previous cases, the general trend of cell  
viability decrease depending  on the concentration  of 

the substance is dose-dependent, however, with a 
more pronounced  effect  at  longer  exposure.  After 
48 hours, a more significant decrease in viability was 
observed, indicating a cumulative cytotoxic effect or 
gradual depletion of the adaptive mechanisms of  
BHK-21 cells. At low concentrations (about 5 mg/ml), 
there is a temporary increase in viability or no pro-
nounced cytotoxic effect, which may be due to the 
adaptive reactions of cells. This feature becomes more 
noticeable after 48 hours, which may indicate the acti-
vation of compensatory mechanisms in the early stag-
es of T4 exposure (Fig. 6). At higher concentrations, a 
signifi cant decrease in viability is observed, which is 
likely caused by accumulation of damage, impaired mi-
tochondrial function, or induction of apoptosis. Thus, 
8-aminocaproic acid exhibits time- and dose-
dependent toxicity to the HNSCC-21 cell line.  

Similar  to  T4, test sample T5 (7-amino-
heptanoicacid) exhibits significant cytotoxicity against 
HNSC-21 cells, which is dose-dependent and reaches a 
maximum at concentrations of approximately  
10 mg/ml. Further increase in the concentration of the 
test compound does not lead to significant changes in 
the cytotoxic effect, indicating that the toxicity plateau 
has been reached. Increasing the exposure time to  
48 hours leads to stabilization  of  the cytotoxic effect,  
which may  indicate the accumulation of toxicity or 
depletion of compensatory mechanisms of cells. 

 

 

  
24 hours, 550 nm 24 hours, 492 nm 

  
48 hours, 550 nm 48 hours, 492 nm 

Figure 5: Dynamics of T3 toxicity 
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24 hours, 550 nm 24h, 492 nm 

 
 

48 hours, 550 nm 48 hours, 492 nm 

Figure 6: Dynamics of T4 toxicity  

All the experimental curves for T5 are in good 
agreement with the mathematical model, although 
there are slight deviations at some points. The differ-
ences between the experimental points and the model 
are more pronounced at 24 hours of exposure, espe-

cially at 492 nm, where emissions are observed at low 
concentrations. After 48 hours of exposure, the toxic 
effect stabilizes, and the differences between the mod-
el and the experiment become less pronounced (Fig. 7) 

The results obtained for sample T6 demonstrate
 

  
24 hours, 550 nm 24 hours, 492 nm 

  
48 hours, 550 nm 48 hours, 492 nm 

Figure 7: Dynamics of T5 toxicity
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a slight fluctuation in viability at low concentrations of 
the test compound (0–10 mg/ml) (Fig. 8). It is ex-
pected that with increasing concentration, there is a 
positive trend of decreasing viability, which is qualita-
tively described by the model. In general, the model 
reflects the general trends of the experimental data 
well. Negative values at the initial concentrations may 
indicate metabolic compensation of cells or the stimu-
latory effect of low concentrations. However, at con-
centrations above 20 mg/ml, the most pronounced de-
crease in viability is observed, indicating an increase 
in the toxic effect over time. The maximum toxic effect 
of T6 is shown at a concentration of 50 mg/ml – 31% 
decrease in cell viability. The absorbance values  at 
492 nm and 550 nm show similar patterns, which in-
dicates the consistency of the MTT test results in both 
spectral ranges. 

When studying the viability of HNK-21 cells un-
der the influence of the T7 sample, significant changes 
in the cell monolayer and a sharp decrease in cell via-
bility were observed in the concentration range from 
10 mg/ml, after which the curve reached a plateau. 
This effect is clearly observed at different wavelengths 
and exposure times (Fig. 9), indicating a significant 
stability of the system. 

To analyze the correspondence of the results ob-
tained after 24 and 48 hours of exposure, a two-
dimensional scatter plot  was  constructed (Fig. 10),  
which   demonstrated   the   nonlinearity   of   the  data  
obtained   at   different   time   intervals.  Although this  
nonlinearity   indicates   possible   complex   biological 

mechanisms in the dynamics of the toxic effect, its lev-
el is insignificant. This makes it possible to make a 
practical assumption about the equality of results after 
24 and 48 hours of exposure.  

The results of the analysis between the meas-
urements at 492 nm and 550 nm indicate a high corre-
lation between the values of the percentage of viability 
drop measured at 550 nm and 492 nm, both after  
24 hours and 48 hours of exposure, which is con-
firmed by high coefficients of determination  
(R² > 0.98) (Fig. 11). However, the nature of the re-
gression dependencies is different: for 24 hours the 
slope coefficient exceeds 1 (1.22), indicating a higher 
sensitivity of the method at 550 nm at  the early stages 
of cell damage,  while for 48 hours the slope is less 
than 1 (0.82), i.e., the drop in viability recorded at  
492 nm is more pronounced at a later stage. This is 
consistent with the mechanism of action of the MTT 
assay, which is based on the metabolic activity of mi-
tochondria: in the early stages, cells are still able to 
reduce MTT to formazan, while with prolonged expo-
sure to the toxicant, decreased metabolism, structural 
damage, or cell death cause a greater difference in the 
values at 492 nm. Thus, the spectrophotometric meas-
urement at 550 nm better reflects early metabolic 
changes, while the measurement at 492 nm reflects 
later manifestations of toxicity. 

When  analyzing  the  results  of   the  neural  net 
work, we obtained data on the proportion of cellular 
area in the images, the total number  of cells,  and their 
average size for each monolayer (Table 2).  

 

 

  

24 hours, 550 nm 24 hours, 492 nm 

  
48 hours, 550 nm 48 hours, 492 nm 

Figure 8: Dynamics of T6 toxicity 
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24 hours, 550 nm 24 hours, 492 nm 

  
48 hours, 550 nm 48 hours, 492 nm 

Figure 9: Dynamics of T7 toxicity 

 

 

 

Figure 10: Analysis of the correlation between the results of viability decline in different time periods 
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Figure 11: Correlation analysis of the results of viability drop measured at different wavelengths 

 

The developed image-based viability assessment  
pipeline combines automated segmentation via Cell-
pose with a custom feedforward neural network to 
predict  relative decreases in  cell  viability  from  mor-
phological and spectrophotometric features. These 
metrics correspond to an effective predictive accuracy 
of approximately 74.7 %, or equivalently a maximum 
deviation of ± 25 % around the true viability reduc-
tion. 

Given the limited dataset (n = 29), the allocation 
  

of a separate validation subset would further reduce 
the effective training sample and lead to unstable pa-
rameter estimation.  

Since  no  validation  subset  was  available,  early 
stopping could not be implemented, which increases 
the risk of overfitting despite applied regularization. 
More rigorous assessment methods such as cross-
validation or bootstrapping were not feasible with the 
present dataset size. 

On the held-out test subset, the error level

Table 2: Image processing results 

Test sample Concentration, mg/ml 
Calculated percentage of 
live cells in the image, % 

Calculated number of 
live cells in the image, n 

Cell size, pixels 

Reference 0 80–89 634–681 97–102 

Т1 
20 34–64 228–400 85 

50 24–45 163–285 75–85  

Т2 50 48–55 341–353 58–66 

Т3 

5 52–56 284–347 85–100 

10 43–49 342–543 60–80 

50 59–62 183–467 60–66 

Т4 
20 16–20 98–117 100–110 

50 13–17 146–288 50–60 

Т5  50 28–32 270–294 58–62 

Т6 
10 62–66 335–386 98–101 

50 28–33 233–390 50–70 

Т7 
1,25 10–17  295–391 50–60 

50 2–3 70–91 30–45 
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remained within a similar range (MAPE ≈ 28%), sug-
gesting that the model’s behaviour on these limited 
unseen samples does not substantially deviate from its 
performance on the training set. However, given the 
very small size of the dataset, these results should be 
interpreted with caution and cannot be considered a 
robust estimate of generalization. Importantly, by in-
tegrating quantitative measures–cell count, size, area–
and spectrophotometric optical density readings into a 
unified feature vector, the system yields a robust, im-
age-driven forecast of cytotoxic effect without the 
need for extensive manual annotation.  

It is important to emphasize that evaluation 
based on a single 24/5 train–test split provides only a 
preliminary approximation of the model’s generaliza-
tion ability. Such a configuration, although acceptable 
for proof-of-concept studies, does not allow obtaining 
statistically robust estimates of prediction error and 
may underestimate the true variability of model per-
formance on unseen data. The limitations arise direct-
ly from the specifics of in vitro cytotoxicity experi-
ments: each measurement requires individual cultiva-
tion of cell monolayers, controlled incubation with test 
compounds, repeated imaging under identical optical 
conditions, and parallel spectrophotometric assess-
ment. Under these constraints, collecting large, homo-
geneous, and reproducible image datasets is technical-
ly challenging, labor-intensive, and resource-
demanding, particularly when multiple concentrations 
and exposure times must be evaluated simultaneously. 

 Discussion 

In previous studies, the approximate antiviral ac-
tivity of the tested compounds was evaluated under 
three in vitro conditions: prophylactic (compound ap-
plied 2 hours before infection), therapeutic and 
prophylactic (compound and virus applied simultane-
ously), and therapeutic (compound added 2 hours af-
ter infection). The compounds showed no preventive 
activity in the prophylactic mode, even at the highest 
concentrations (%CFD = 100%). However, under ther-
apeutic and therapeutic-prophylactic conditions, sev-
eral compounds – particularly T1, T2, T6, and  
T7 – demonstrated moderate to high antiviral activity, 
with increased efficacy at lower concentrations. The 
most pronounced therapeutic effect was observed for 
T1, T6, and T7, which significantly reduced the cyto-
pathic effect at moderate doses [32]. A distinctive fea-
ture of the present study is the detailed time-course 
evaluation of compound toxicity combined with the 
use of information technologies for its analysis. Unlike 
conventional approaches, we introduced an integrated 
method based on automated image analysis and neu-
ral network algorithms, which enables the combined 
use of morphological features (cell count, area, size) 
anspectrophotometric     MTT     measurements    with-

in a single analytical framework for cytotoxicity as-
sessment. 

Given the small size of the dataset (n = 29), a 
meaningful comparison with baseline methods such as 
linear regression, decision trees, or SVR is simply not 
feasible. With so few samples, even the most basic 
models tend to behave unpredictably: their perfor-
mance can fluctuate substantially from one split to an-
other, and any apparent differences between algo-
rithms mainly reflect the randomness of the sample 
rather than real differences in how well the methods 
work. 

For this reason, we did not aim to rank or identi-
fy the “best” predictive model in this study. Instead, 
the neural network was used as a proof-of-concept 
tool to demonstrate that heterogeneous morphological 
and spectrophotometric data can be integrated within 
a single analytical framework, and that such integra-
tion may capture nonlinear patterns that simpler ap-
proaches might miss.  

A direct comparison between the variability of 
the model’s predictions and the inherent variability of 
the MTT assay was not performed in this study. Alt-
hough four technical MTT replicates were obtained for 
each concentration, the model was built using only the 
averaged optical density values. As a result, the indi-
vidual replicate measurements were not included in 
the modelling workflow and cannot be directly com-
pared with the variability of the model outputs. 

In addition, a reliable assessment of MTT assay 
variability usually requires not only technical repeats 
but also independent biological replicates and meas-
urements performed across different plates or exper-
imental runs. Such data were not available within the 
scope of this work. For this reason, our focus was on 
demonstrating the feasibility of combining morpholog-
ical descriptors with spectrophotometric measure-
ments, rather than on a detailed quantification of pre-
dictive variability relative to the intrinsic noise of the 
MTT assay. 

The analysis of  the  dynamics of  BHK-21 cell vi-
ability  at  two  different  wavelengths,  492 nm and 
550 nm, enabled us to evaluate differences in the de-
tection of cytotoxic effects across the test samples. 
Overall, cell viability values were consistently slightly 
lower at 550 nm compared to 492 nm. These findings 
indicate that classical MTT assay methods have limita-
tions in differentiating between early and late stages 
of toxic exposure, which may lead to inaccuracies in 
identifying threshold concentrations. In contrast, the 
application of automated IT-based approaches al-
lowed the detection of more subtle morphological al-
terations in the cell monolayer that are not always re-
flected by metabolic activity but may serve as critical 
early predictors of cytotoxicity. 

After 24 hours, most of the test samples showed 
a similar correlation between their concentration and 
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cell viability at both wavelengths. Despite the presence 
of  certain  differences in  the  results  obtained at 
492 and 550 nm, the correlation trend remained. This 
indicates the stability and homogeneity of the results 
obtained. 

 Since the automated image processing was per-
formed for a 24-hour exposure, a comparison of these 
results with the MTT assay data obtained at 24 and  
48 hours demonstrated a high level of concordance. In 
most samples, a correlation between cell viability and 
compound concentration was observed at both time 
points, indicating the reproducibility of the results. 
This suggests that automated image analysis enables 
cytotoxicity prediction with an accuracy of approxi-
mately 75%, making it a viable alternative to classical 
methods at the stages of preliminary screening. Such 
an approach significantly reduces the duration of the 
study and lowers the costs associated with conducting 
a full-scale MTT assay. 

After 48 hours of exposure, the trends recorded 
after 24 hours are maintained. However, for some 
samples (T2 and T4), the difference between the 
wavelengths decreased, which may indicate a stabili-
zation of the toxic effect over time. In the case of sam-
ples where the difference between the wavelengths is 
maintained or even increased, it is possible to assume 
the presence of additional factors of influence, such as 
the cumulative effect of metabolites of compounds. 

Different values of cell viability at different wave-
lengths can be due to different absorption of light by 
cells, as they have specific absorption spectra for each 
wavelength. It is also worth considering the different 
optical properties of cellular components, which can 
also change the measurement results at different 
wavelengths. 

The time course analysis demonstrated a general 
increase in the toxic effect after 48 hours in all sam-
ples, indicating a cumulative effect or a gradual disrup-
tion of cellular adaptation mechanisms. 

An interesting feature of the data obtained is the 
initial increase in cell viability at low concentrations 
for T1, T2, T4, and T6, which may indicate the biologi-
cal activity of these compounds in a certain concentra-
tion range. This is especially clearly observed after  
48 hours of exposure. For T1, this effect is likely due to 
the fact that GABA has antioxidant properties that can 
reduce oxidative stress, which has a positive effect on  
cell viability [44]. 

It is also known from the sources that GABA (T1) 
can act as an alternative energy source, metabolized 
through the GABA shunt to form succinate, which en-
hances mitochondrial activity and oxidative phos-
phorylation [45]. Given this mechanism and the exper-
imental data obtained, it can be assumed that the 
presence of a GABA shunt in BHK-21 cells contributes 
to the increase in mitochondrial dehydrogenase activi-
ty and, accordingly, affects the MTT test result.  

In general, it can be said that the studied amino 
carboxylic compounds have various physicochemical 
properties that affect their bioavailability, membrane 
permeability, and, as a result, potential cytotoxicity. 
Short-chain compounds, such as 4-aminobutyric 
(GABA, T1) and 5-aminovaleric acids (T2), are highly 
soluble in water due to their high polarity, but their 
permeability to lipid environments may be limited, po-
tentially reducing their toxicity [46]. In turn, 6-amino-
hexanoic acid (T3) and 6-aminocaproic acid (T6) have 
a longer aliphatic chain, which increases their lipo-
philicity and biological activity [40, 47].  

Medium-chain compounds, such as 7-amino-
heptanoic acid (T5) and 8-aminocaprylic acid (T4), 
exhibit amphiphilic properties, which facilitates their 
interaction with biological membranes [48, 49]. T4 is 
particularly characterized by its ability to diffuse into 
lipid environments, which may affect its cytotoxic  
effect [50]. Methyl-6-aminocapronate hydrochloride 
(T7) is a modified compound with high reactivity, 
which improves its cell permeability and affects bio-
logical activity. 

In general, an increase in carbon chain length and 
lipophilicity increases the ability of compounds to 
penetrate cell membranes, which can both contribute 
to therapeutic effects and increase potential cytotoxi-
city through interaction with membrane structures 
and protein complexes [50–52]. 

Automated image processing of the cell mono-
layer made it possible to assess changes in cell size, 
number, and relative total area in the image. In partic-
ular, the correlation between the concentration of the 
studied compounds and changes in cell size was the 
most revealing, as it indicates toxic effects that cause 
changes in cell morphology. 

In general, it can be noted that with an increase 
in the concentration of the compound, a decrease in 
the average cell size is observed. For example, the T1 
sample at a concentration of 20 mg/ml shows an aver-
age cell size of 85 pixels,  and  at  a  concentration  of 
50 mg/ml, the size decreases to 75–85 pixels, indicat-
ing a change in cell morphology at a higher concentra-
tion. In the T2 sample at a concentration of 50 mg/ml, 
the average cell size is 58-66 pixels, which is a signifi-
cant decrease compared to the reference, where the 
average cell size varies between 97–102 pixels. 

In the case of T4, no  changes  in cell  morphology 
were observed at a concentration of 20 mg/ml com-
pared  to  the  reference,  and   at  a  concentration of 
50 mg/ml, the cells shrank to 50–60 pixels, which is a 
clear example of how increasing the concentration of a 
compound can lead to a decrease in cell size, possibly 
due to inhibition of cell division or other metabolic 
changes. 

The data of T3, T5 and T7 samples at concentra-
tions of 10 mg/ml and above show that the cell size 
practically does not change, which indicates the stabil-
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ity of cell morphology within these doses. This phe-
nomenon correlates with the plateau effect observed 
in   the   MTT  test results.   When   the  concentration 
of compounds  increases  after a  certain  threshold 
(10 mg/ml or more), changes in cell size are not signif-
icant, and this may indicate that a level has been 
reached at which further increases in concentration do 
not lead to a proportional decrease in cell size or 
changes in cell morphology. Thus, the stability of cell 
size in these samples is consistent with the presence of 
a saturation effect when further exposure to the com-
pound does not cause significant changes in the cells, 
which can also be observed in the results of the MTT 
test, where a plateau of efficacy or toxicity is reached. 

With increasing concentrations of the studied 
compounds, there is also a general tendency to de-
crease both the number of cells and their relative area 
in the images. A decrease in the number of cells in the 
images also indicates a violation of cellular viability as 
a result of the compounds. The downward trend in the 
percentage of cells also correlates with the results of 
cytotoxicity tests, confirming the negative impact of 
elevated concentrations. 

Thus, automated image processing is an im-
portant tool for visualizing changes in cell morphology 
and cell number under different exposures to the 
compounds under study. 

It is important to understand that the MTT assay 
does not provide detailed information about morpho-
logical changes in cells, including changes in their 
shape or size, which can be an important aspect of cy-
totoxicity. In addition, the MTT assay only assesses the 
metabolic activity of cells, which may not always be a 
correct indicator of cell viability, as some cells may 
remain active but be damaged or functionally inactive. 
In addition, this method may be sensitive to certain 
chemicals that may inhibit tetrazolium reduction, dis-
torting the results. 

Instead, automated image processing does not 
reflect the metabolic activity of cells, as it only evalu-
ates their physical presence and morphological chang-
es. Also, certain algorithms may have difficulty with 
correct segmentation in the presence of cells with 
fuzzy contours and poor image quality. 

 Thus, the combination of image processing and 
the MTT assay allows for a comprehensive assessment 
of cytotoxicity, combining a detailed analysis of mor-
phological changes in cells with data on their metabol-
ic activity. This approach provides a more accurate 
and comprehensive characterization of the effect of 
the compounds under study on cell viability. 

The use of artificial intelligence algorithms to an-
alyze experimental images opens up new opportuni-
ties for automated cytotoxicity assessment, allowing 
not only the identification of cells and classification of 
them by the level of damage but also the prediction of 
the dynamics of toxic effects in the long term. Auto-

mated cell segmentation using neural network models 
allows us to effectively analyze changes in the cell 
monolayer under the influence of the test substances. 

The results of the study confirmed that the com-
bination of traditional methods, in particular the MTT 
test, with the analysis of cell morphological changes 
using artificial intelligence algorithms improves the in-
terpretation of cytotoxic effects. In particular, the cor-
relation between changes in cell area and cell viability 
revealed the dose-dependent nature of the toxic effect 
and confirmed the effect of hormesis for some sam-
ples. 

In addition, the integration of artificial intelli-
gence into the analysis process allows us to determine 
the threshold concentrations at which the cytotoxic ef-
fect of substances begins and calculate CD₅₀, which is a 
critical indicator for assessing their safety. The use of 
neural networks also opens up opportunities for 
building artificial intelligence models that can predict 
the potential toxic effects of new compounds based on 
the data obtained. 

Thus, the introduction of automated cytotoxicity 
assays significantly improves the accuracy and repro-
ducibility of experimental studies, reducing the subjec-
tivity of the assessment. This, in turn, can significantly 
optimize the process of screening antiviral drugs, re-
ducing the time and resources required for the devel-
opment of new drugs. 

To automate and preliminarily assess the cyto-
toxicity of the compounds under study, we employed 
an image processing method based on the Cellpose 
neural network architecture. This approach enabled 
rapid and objective quantification of key morphologi-
cal parameters of the cell monolayer, including cell 
number, size, and shape – indicators that are often 
sensitive to cytotoxic damage but may not be fully cap-
tured by conventional biochemical assays. For this 
purpose, we developed custom software, CellCalc, 
which integrates the Cellpose model and provides au-
tomated cell detection, quantification, and estimation 
of the relative area of the cell monolayer in compari-
son with control samples. 

The use of artificial intelligence for cell segmen-
tation and predictive modeling introduced a new level 
of data interpretation. Compared to previously pub-
lished approaches [33–35], which relied primarily on 
basic image processing algorithms (e.g., thresholding 
or edge detection), our system demonstrated signifi-
cantly improved concordance between morphological 
metrics and biochemical test outcomes, such as MTT 
assay results. Moreover, the application of neural net-
works significantly reduced the volume of manual 
work, minimized user bias, and enhanced the repro-
ducibility and scalability of cytotoxicity assessments. 
This methodological advancement facilitates high-
throughput and standardized analysis, making it par-
ticularly   valuable   for   drug   screening   and  toxicit
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 profiling. 
The neural network it brings together morpho-

logical features of the cell monolayer, quantitative 
measurements obtained from image segmentation, 
and spectrophotometric MTT readings to produce an 
integrated estimate of cytotoxicity. This makes it pos-
sible to account for both metabolic activity and struc-
tural changes in the cell population at the same  
time – an aspect that is often difficult to capture with 
traditional statistical models, especially when the rela-
tionships between variables are nonlinear. Because 
the network works with a multidimensional set of fea-
tures (cell count, area, size, optical density, and oth-
ers), it can approximate these interactions without re-
lying on predefined assumptions about the form of the 
dependence. 

Another practical advantage of this approach is 
the potential to use the model as an early screening 
tool before running a full MTT assay. Automated eval-
uation of morphological changes allows researchers to 
quickly filter out compounds that are clearly cytotoxic 
or unlikely to be of interest, reducing the amount of 
experimental work required. Collecting large and con-
sistent in vitro datasets is technically demanding and 
resource-intensive, which limits the feasibility of ap-
plying more sophisticated methods at this stage. Even 
so, the proposed approach demonstrates the useful-
ness of integrating morphological and metabolic indi-
cators and can serve as a foundation for future devel-
opment of automated systems for cytotoxicity assess-
ment. 

Conclusions 

A systematic analysis of the cytotoxicity of the 
test samples on BHK-21 cells was performed using a 
standard MTT assay and automated image processing. 
The results obtained allowed us to assess the dynam-
ics of cell viability at different wavelengths, which 
made it possible to identify certain differences in the 
spectrophotometric determination of cell metabolic 
activity. Measurements performed at 550 nm demon-
strated greater sensitivity in detecting early metabolic 
changes in cells, making this wavelength preferable for 
identifying subtle cytotoxic effects during initial stages 
of exposure. It was found that the values of cell viabil-
ity at 550 nm are generally lower, which may be due to  
differences in the spectral characteristics of cell com-
ponents. The time course analysis showed an increase 
in cytotoxic effects after 48 hours of exposure, which 
may indicate the cumulative effect of the studied com-
pounds or a gradual disruption of cellular adaptation 
mechanisms. Moreover, a comparative analysis of cy-
totoxicity at 24 and 48 hours revealed that extending 
the exposure time to 48 hours did not significantly al-
ter the overall trends in cell viability. This suggests 

that a 24-hour incubation period is sufficient for relia-
ble cytotoxicity assessment, allowing for reduced as-
say duration without compromising result accuracy. In 
addition, for some samples, a hormesis effect was rec-
orded, which is manifested in an increase in cell viabil-
ity at low concentrations. 

Automated image processing of the cell mono-
layer made it possible to assess changes in cell mor-
phology under the influence of the test samples. A nat-
ural decrease in the average cell size with increasing 
concentration of compounds was found, which con-
firms the presence of cytotoxic effects. For some sam-
ples, a plateau effect was recorded when an increase in 
concentration did not cause further significant chang-
es in cell morphology, which correlated with the re-
sults of the MTT test. In addition, there was a dose-
dependent decrease in the number of cells and their 
percentage in the images, which is consistent with the 
cytotoxicity results.  

The combination of the MTT assay with comput-
er-based image analysis made it possible to obtain a 
more comprehensive view of the effects of the studied 
compounds. The developed IT tool and automated al-
gorithms reduced the time and labor required for cy-
totoxicity assessment. With an approximate predictive 
accuracy of 75%, the proposed approach may serve as 
a cost-effective and reproducible complement to clas-
sical methods, particularly in preliminary or high-
throughput screening of biologically active com-
pounds. 

Although the dose–response tendencies and the 
indications of possible hormesis observed in the da-
taset appear biologically reasonable, interpretations 
based on AI-generated predictions should be ap-
proached with some caution. The neural-network 
model used in this work represents an initial proof-of-
concept, and its performance has been evaluated only 
within the constraints of the available dataset. 

At the same time, this approach enables not only 
the estimation of cell viability but also the analysis of 
morphological changes, thereby expanding the possi-
bilities for toxicity evaluation. The application of artifi-
cial intelligence to cellular image analysis demon-
strates the potential for developing automated cyto-
toxicity screening tools that could streamline the 
study of biologically active compounds and support 
the search for new therapeutic agents. 
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ОЦІНКА ЦИТОТОКСИЧНОСТІ АЛІФАТИЧНИХ АМІНОКАРБОНОВИХ СПОЛУК ЯК ПОТЕНЦІЙНИХ 
ПРОТИКОРОНАВІРУСНИХ АГЕНТІВ 

  
Проблематика. Попри успіхи у створенні вакцин проти SARS-CoV-2, висока мутагенність коронавірусів, міжвидова передача та 

поява нових штамів вимагають подальшого пошуку ефективних противірусних засобів. Ключовим етапом у цьому процесі є оці-
нка цитотоксичності потенційних сполук, що дозволяє визначити їхню безпеку та терапевтичну перспективність. Сучасні ІТ-
рішення, зокрема автоматизований аналіз зображень і штучний інтелект, підвищують точність та об’єктивність оцінок.  

Мета. Визначити цитотоксичність сполук із потенційною антикоронавірусною активністю та провести її аналіз із використанням 
ІТ-засобів. 
Методика реалізації. У дослідженні використано перещеплювальну клітинну лінію ВНК-21 сірійського хом’ячка, яку інкубували з 

сімома аліфатичними амінокарбоновими сполуками в шести концентраціях. Життєздатність клітин визначали за допомогою 
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МТТ-тесту. Для автоматизованого аналізу використовували обробку зображень клітинного моношару та експоненційну модель 
дозозалежної відповіді. 
Результати. Дослідження виявило виражену дозо- та часозалежну цитотоксичність більшості зразків, із максимальним знижен-

ням життєздатності при концентраціях понад 10 мг/мл. Зафіксовано ефект гормезису на низьких концентраціях (до 5–10 мг/мл), 
що може свідчити про активацію клітинних захисних механізмів. Висока  кореляція  між  вимірюваннями при 492 нм  та 550 нм 
(R² > 0,98) підтвердила достовірність спектрофотометричних даних. Експоненційна модель дозволила апроксимувати криві ток-

сичності, особливо у середньому та високому діапазонах концентрацій. Побудована нейронна мережа на основі даних зобра-
жень та МТТ-тесту показала здатність прогнозувати життєздатність клітин навіть за обмеженої кількості навчальних даних.  
Висновки. Поєднання МТТ-тесту з автоматизованим аналізом зображень забезпечує комплексну оцінку цитотоксичності. Вста-

новлено дозозалежне зниження життєздатності клітин та морфологічні зміни під впливом досліджуваних сполук. Вимірювання 
при 550 нм виявились більш чутливими до ранніх змін метаболізму клітин. Використання ІТ-алгоритмів продемонструвало перс-
пективність автоматизованого підходу до скринінгу біологічно активних речовин. 

Ключові слова: цитотоксичність; in vitro; амінокарбонові сполуки; МТТ-тест; обробка зображень; нейронна мережа. 
 


