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The COVID-19 pandemic highlighted the critical role of chest computed tomography (CT) in diagnosing and manag-
ing viral pneumonia, while also creating an unsustainable workload for radiologists. Machine learning (ML) has
emerged as a powerful solution to this challenge. This article provides a comprehensive review of machine learning
methods for the automated analysis of COVID-19-associated cardiopulmonary pathology on CT images.

We synthesize key findings from foundational and advanced studies. Recent advances demonstrate that machine
learning models, particularly those integrating deep learning with quantitative texture analysis, can accurately clas-
sify hallmark lesions (e.g., ground-glass opacity, consolidation), differentiate between acute and Long COVID lung
changes, and distinguish viral pneumonia from other conditions. These texture-based biomarkers provide objective
measures of underlying biological processes such as alveolar inflammation and interstitial fibrosis.

In this review, we elucidate the relationship between CT radiologic patterns (ground-glass opacities, the crazy-
paving pattern, consolidation, and fibrotic changes) and the corresponding biological processes - alveolar exudate,
interstitial edema, and tissue remodeling. Their quantitative representation via texture and morphometric features
in machine learning models yields noninvasive biomarkers that deepen understanding of COVID-19 pathophysiolo-
gy and support clinical decision-making for risk stratification and disease monitoring. Future research should focus
on developing more robust, computationally efficient models and integrating them into clinical workflows. There is
also great potential in using these quantitative tools to create non-invasive biomarkers for tracking disease progres-
sion, aiding clinical trial stratification for novel therapeutics, and informing health-economic decisions on resource
allocation.
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Introduction

The COVID-19 pandemic, caused by the novel
coronavirus SARS-CoV-2, precipitated an unprece-
dented global health crisis, placing immense strain on
diagnostic resources. According to the World Health
Organization (WHO), by the end of 2024, over 770 mil-
lion confirmed cases and more than 7 million deaths
had been reported [1]. COVID-19 remains a leading
cause of mortality among respiratory diseases world-
wide [2].

Chest computed tomography (CT) rapidly
emerged as a front-line imaging modality, valued not
only for its high sensitivity in detecting viral pneumo-
nia [3] but also for its crucial role in assessing disease
severity, guiding patient triage, and monitoring treat-
ment response [4]. The characteristic radiological pat-
terns observed in COVID-19 - such as ground-glass
opacities (GGO), consolidation, and the "crazy-paving"
pattern - are direct visual correlates of the underlying

pathophysiology [5]. GGO corresponds to partial filling
of the alveolar spaces with inflammatory exudate or
fluid and thickening of the lung interstitium, repre-
senting a stage of diffuse alveolar damage where lung
architecture is still discernible. In contrast, consolida-
tion indicates a more advanced stage of lung injury,
where alveolar air is completely replaced by patholog-
ical material, rendering the lung tissue dense and
opaque. However, the sheer volume of CT examina-
tions generated during pandemic peaks created a sig-
nificant diagnostic bottleneck, overwhelming radiolo-
gists and risking delays in clinical decision-making.
This clinical and logistical challenge underscored the
urgent need for automated computational tools capa-
ble of rapidly and accurately interpreting these com-
plex imaging findings, thereby setting the stage for the
widespread application of machine learning in the
fight against COVID-19.

The primary objective of this review is to provide
a critical and comprehensive examination of the ma-
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chine learning methods applied to the diagnosis and
assessment of COVID-19-associated cardiopulmonary
pathology from chest CT images. This review synthe-
sizes the evolution of the field, from foundational
techniques rooted in texture analysis and classical ma-
chine learning to the application of advanced deep
learning architectures, such as convolutional neural
networks, and the emerging frontier of multimodal ar-
tificial intelligence.

Specifically, this review aims to:

1. Synthesize the state-of-the-art by summarizing
the key methodologies and performance of influential
studies.

2. Bridge the technological and biological do-
mains by emphasizing how computational biomarkers
derived from CT images correspond to underlying
pathophysiological processes like alveolar inflamma-
tion and fibrosis.

3. Critically evaluate the principal limitations and
challenges of current models, including issues of gen-
eralizability, clinical integration, and computational
cost.

4. Identify and delineate promising directions for
future research aimed at developing more robust, clin-
ically integrated, and impactful diagnostic tools for
current and future epidemiological crises.

1. Diagnostic Approaches in COVID-19

The diagnosis of COVID-19 is a crucial element in
managing the pandemic. There are several approaches
to diagnosis, each with its own advantages and limita-
tions depending on the clinical context.

The polymerase chain reaction (PCR) test is con-
sidered the gold standard for detecting the SARS-CoV-
2 virus [6]. It is a nucleic acid amplification test
(NAAT) that detects viral RNA through reverse tran-
scription polymerase chain reaction (RT-PCR). For
PCR testing, a nasopharyngeal swab is taken, and the
viral RNA is amplified for detection. This method pro-
vides high sensitivity and specificity. According to
studies, the sensitivity of PCR can reach up to 95% un-
der optimal conditions [7], making it the most reliable
method for detecting SARS-CoV-2 [8]. However, PCR
requires specialized laboratory equipment, making it
less accessible for large-scale screening, especially in
remote or overburdened regions.

Antigen tests detect viral proteins (antigens)
through an enzyme-linked immunosorbent assay
(ELISA) of a nasopharyngeal or nasal swab. Their main
advantage is speed: the result is available within 15-30
minutes, making them useful for mass testing and
emergency use. However, the sensitivity of antigen
tests is significantly lower, especially at low viral loads
or in the early stages of the disease. According to a
study, the sensitivity of antigen tests ranges from
88.2% to 89.6% [9]. This means that they are more
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suitable for screening in populations with a high prob-
ability of disease or in cases where a quick result is
needed.

Serum immunoglobulin M (IgM) and immuno-
globulin G (IgG) concentrations, quantified through
standard serological assays, reflect the humoral im-
mune response to pathogens; although these meas-
urements are informative for confirming prior expo-
sure and assessing immune status, they lack the tem-
poral sensitivity required for early-stage diagnosis or
definitive confirmation of an active infection. Follow-
ing infection, the immune system initiates antibody
production. Typically, IgM class antibodies appear
first, often approximately 5-10 days after infection,
whereas IgG class antibodies usually reach detectable
levels later, typically from day 7-14. This inherent de-
lay in the antibody response means that serological
tests are less suitable for diagnosing acute infection at
very early stages (e.g., during the first week) com-
pared to methods that directly detect the virus or its
components. Furthermore, their prognostic value re-
garding the duration of protection remains a subject of
active research, as evidenced by findings from 2023-
2024 [10-12].

The development of automated approaches to
the diagnosis of infectious diseases has become par-
ticularly important after the emergence of highly
pathogenic coronaviruses, such as SARS-CoV, MERS-
CoV, and SARS-CoV-2. For example, to combat MERS-
CoV, methods for predicting immune response and
creating potential vaccines using computational mod-
eling are being actively investigated [13]. Similar ap-
proaches to analyzing viral infections can also be ap-
plied in the development of automated COVID-19 di-
agnostic systems and digital medicine.

Chest radiography is often used to assess the
condition of the lungs in patients with COVID-19
symptoms. X-ray images can reveal signs characteris-
tic of viral and bacterial pneumonia, including bilateral
lung lesions. Although chest radiography is not as sen-
sitive as CT, it remains a useful method for detecting
severe forms of pneumonia, especially in settings with
limited access to CT. According to studies, chest radi-
ography detects abnormalities in 63% of patients with
moderate to severe COVID-19 [14].

Chest CT is a more sensitive method for detecting
lung lesions caused by COVID-19 compared to chest
radiography. CT allows the detection of characteristic
changes in the lungs, such as ground-glass opacities,
consolidations, and fibrosis, which are typical of viral
pneumonia. This makes CT an indispensable tool for
monitoring severe forms of disease. The sensitivity of
CT for detecting lung lesions in patients with COVID-
19 ranges from 76.25% to 90% [15], making this
method valuable for assessing disease progression and
planning treatment [16].
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Table 1 compares the diagnostic methods dis-
cussed based on sensitivity, specificity, turnaround
time, cost, and key advantages/disadvantages.

While diagnostic methods such as PCR or antigen
tests directly detect the presence of the virus, CT of-
fers the unique advantage of allowing assessment of
the extent of lung damage. The high sensitivity of CT,
combined with the ability to obtain images in real-
time, makes it an important tool in clinical decision-
making. In some patients with low viral load, the ini-
tial PCR test may be false-negative, whereas CT al-
ready captures typical signs of COVID-19 pneumonia
[17, 18]. Although CT sensitivity is generally high [18-
20], its specificity varies significantly and is typically
lower than that of PCR [21] and approved SARS-CoV-2
rapid antigen tests [22]. Thus, it is advisable to use CT
as an adjunct to laboratory diagnostics and as a means
of monitoring the course of the disease.

As research indicates [23, 24], chest CT is the
most informative method for diagnosing alterations in
lung architecture in COVID-19 viral pneumonia. Serial
CT findings demonstrate that the radiological evolu-
tion of pneumonia in COVID-19 correlates with the
clinical course of the disease [25].

With the application of machine learning and
deep learning methods, the potential of CT as a diag-
nostic tool significantly increases. Studies have shown
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that such algorithms can detect and quantify abnor-
malities on CT images with an accuracy exceeding
90% [26]. Convolutional neural networks (CNNs), as
one type of deep learning algorithm, have proven ef-
fective in recognizing COVID-19-specific signs, such as
ground-glass opacities and consolidations [27]. This
not only improves diagnostic accuracy but also signifi-
cantly reduces physician workload.

The authors of reference [28] believe that artifi-
cial intelligence systems, particularly machine learn-
ing, are capable of revolutionizing radiological diag-
nostics, improving detection, increasing diagnostic ac-
curacy, and reducing the time spent on developing di-
agnostic conclusions.

2. Methodologies and Applications of Machine
Learning in COVID-19 CT Analysis

The rapid progression of the COVID-19 pandemic
necessitated the development of automated tools to
aid in diagnosis. Machine learning and deep learning
have become central to this effort, offering powerful
methods for analyzing chest CT images, which are rich
in diagnostic information. The literature reflects pro-
gression from foundational techniques to highly spe-
cialized deep learning models for various diagnostic
tasks.

Table 1: Overview and comparison of key diagnostic approaches in COVID-19
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2.1. Early Detection and Lesion Classification

Initial research focused on identifying and classi-
fying the characteristic lesions (Fig. 1) of COVID-19
pneumonia, such as GGO, crazy-paving patterns, and
consolidation.

A common strategy involves combining tradi-
tional machine learning with deep learning features.
For instance, Ukrainian researchers developed hybrid
approaches that utilized texture analysis, specifically
the gray level co-occurrence matrix (GLCM), to extract
quantitative features from regions of interest, which
were then fed into a custom seven-layer convolutional
neural network for classification [29]. While this
method proved effective, particularly for GGO identifi-
cation, the authors noted limitations related to small
patient cohorts and variable accuracy across different
lesion types, underscoring the need for model refine-
ment.

Building on this, more sophisticated multi-level
diagnostic pipelines were proposed. Davydko et al.
[30, 31] designed a system that integrated convolu-
tional neural networks with other machine learning
classifiers, such as logistic self-organizing forests
(LSOF) and the group method of data handling
(GMDH). This pipeline performed a sequence of tasks:
first filtering images for signs of COVID-19, then seg-
menting the affected lung areas with a U-Net model
and finally classifying the specific lesion types. The au-
thors reported high classification efficacy, especially
for GGO, but highlighted that segmentation accuracy
and the system's computational complexity remained
areas for future improvement [31].

2.2. The Biological Significance of CT Texture
Biomarkers

The machine learning models discussed in this
review rely on classifying radiological patterns whose
texture features are not arbitrary mathematical con-
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structs; rather, they are quantitative descriptors of
underlying biological processes at the tissue and cellu-
lar level. Understanding this link is fundamental to ap-
preciating their clinical and scientific value [32].

2.2.1. Ground-Glass Opacity as a Marker of Early
Alveolar Injury

GGO is radiologically defined as a hazy increase
in lung attenuation that does not obscure the underly-
ing pulmonary vessels. From a biological standpoint,
GGO represents an early and often reversible stage of
lung injury. The specific pathophysiology includes the
partial filling of alveolar spaces with proteinaceous
fluid, inflammatory cells (exudate), or blood, com-
bined with a thickening of the lung interstitium due to
edema and cellular infiltration [32]. Texture analysis
quantifies this state with high precision. Features like
increased homogeneity and low contrast reflect the
relatively uniform nature of the fluid-filled alveoli
compared to the air-tissue interface of healthy lungs.
Therefore, a texture-based GGO classifier does not
merely identify a pattern; it quantifies the extent of in-
itial diffuse alveolar damage, providing a sensitive bi-
omarker for the onset of viral pneumonia.

2.2.2. Consolidation and Crazy-Paving as Indica-
tors of Disease Progression

As the disease progresses, GGO can evolve into
consolidation or a crazy-paving pattern. Consolidation
appears as a dense, uniform opacification that com-
pletely obscures the underlying lung architecture. This
signifies a more severe stage of injury where the al-
veolar air has been entirely replaced by inflammatory
exudate, corresponding to advanced diffuse alveolar
damage (DAD) [32]. Texture algorithms detect this as
a highly homogeneous region with very low internal
contrast. The crazy-paving pattern, consisting of GGO
superimposed with thickened interlobular septa, re-
flects a dual pathology: the GGO signifies alveolar fill-
ing, while the linear septal thickening indicates pro-
nounced interstitial edema. Computationally, this is a
highly heterogeneous pattern, captured by texture

c)
Figure 1: Examples of chest CT slices with: a - ground-glass opacity; b - crazy-paving pattern; c - consolidation.
Original images from the authors’ institutional archive (de-identified); not reproduced or adapted from any pub-
lished source.
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a) b)
Figure 2: Examples of chest CT slices: a — normal; b - with pneumonia; ¢ - with COVID-19. Original images from
the authors’ institutional archive (de-identified); not reproduced or adapted from any published source.

features like high entropy and contrast. A model that
differentiates these patterns is thus distinguishing be-
tween stages of inflammatory progression, from par-
tial alveolar flooding (GGO) to complete flooding (con-
solidation) and combined alveolar-interstitial edema
(crazy-paving).

2.2.3. Fibrotic-like Changes as Signatures of Tissue
Remodeling and Scarring

In the post-acute phase, particularly in Long
COVID, the lung can undergo a process of mal-adaptive
repair, leading to permanent fibrotic-like changes [33].
These include reticulations, traction bronchiectasis,
and honeycombing, which represent irreversible ar-
chitectural distortion. Biologically, this is driven by the
persistent activation of fibroblasts, leading to exces-
sive deposition of collagen and other extracellular ma-
trix proteins, which results in lung scarring and stiff-
ening [34]. This process is often accompanied by mi-
crovascular injury and remodeling, impairing gas ex-
change. Texture analysis excels at quantifying this
structural disarray. Features that measure heteroge-
neity, randomness (entropy), and the presence of
sharp edges and lines are highly sensitive to these
changes. Consequently, machine learning models
trained on these texture biomarkers can objectively
measure the degree of established fibrosis, offering a
powerful tool for prognostication and monitoring the
long-term sequelae of severe COVID-19.

2.3. Differential Diagnosis

A critical clinical task is the differentiation of
COVID-19 from other respiratory conditions with
similar radiological presentations. To address this, Yu-
khymiuk et al. [35] conducted a comparative analysis
using both CNNs and autoencoders to distinguish be-
tween normal, bacterial pneumonia, and COVID-19
chest CT scans (Fig. 2). Their work demonstrated the
superior classification performance of convolutional
neural networks over autoencoders for this task, while

also acknowledging the potential for model overfitting
and the need for more robust data handling, for in-
stance by incorporating segmentation.

This line of research is well-represented in inter-
national literature. Mishra et al. [27] applied transfer
learning using established convolutional neural net-
work architectures, VGG16 and ResNet50, to classify
CT scans as normal, pneumonia, or COVID-19. They
achieved excellent results, particularly in the binary
task of distinguishing COVID-19 from normal scans
and used techniques like data augmentation and
cross-validation to ensure model robustness. Similar-
ly, Gupta and Bajaj [36] evaluated pre-trained models
like MobileNetV2 and DarkNet19, finding that Dark-
Net1l9 was exceptionally accurate for COVID-19
screening. They also proposed a novel lightweight
model that could reduce training time while maintain-
ing high performance, a crucial factor for clinical de-
ployment.

2.4. Tracking Disease Progression and Long
CcoviD

Beyond initial diagnosis, machine learning offers
tools to monitor disease progression and identify long-
term sequelae, or "Long COVID." Lutchenko et al. [37]
specifically focused on creating models to distinguish
between the acute phase of COVID-19 and the persis-
tent changes of Long COVID on CT images (Fig. 3).

Their methodology involved U-Net-based lung
segmentation followed by texture analysis and classi-
fication with various ensemble machine learning algo-
rithms [38]. Among the tested methods, the random
forest of optimal complexity trees (RFOCT) [39] was
identified as highly effective, showcasing the potential
of machine learning to quantify subtle, persistent
structural lung changes [37].

The clinical relevance of this research is support-
ed by systematic reviews and meta-analyses. For ex-
ample, a review by Babar et al. [33] of short- and long-
term CT findings confirmed that while abnormalities
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a)
Figure 3: Examples of chest CT slices: a - with signs of COVID-19; b - with signs of Long COVID. Original images
from the authors’ institutional archive (de-identified); not reproduced or adapted from any published source.

like GGO decrease over time, fibrotic-like changes can
persist for two or more years post-infection, especially
in patients who had severe disease. This provides a
strong clinical basis for developing computational
tools to track and manage post-COVID pathology.

2.5. Advanced Architectures and Novel Ap-
proaches

Researchers have also explored beyond standard
convolutional neural networks to improve perfor-
mance and efficiency. Godbin and Jasmine [40]
demonstrated that strong results could be achieved
using only GLCM-derived texture features (contrast,
homogeneity, etc.) coupled with ensemble classifiers
like random forest, XGBoost, and LightGBM. Their
random forest model reached near-perfect classifica-
tion accuracy on a public dataset, highlighting the
power of well-engineered features.

In a move towards more computationally effi-
cient hardware, Garain et al. [41] proposed a novel

a)

b)

approach using a deep convolutional spiking neural
network (SNN). SNNs mimic biological neurons more
closely and can operate on low-power neuromorphic
chips. Their potential-dependent SNN model outper-
formed traditional deep learning models like VGG16
and ResNet on a COVID-19 detection task, suggesting a
promising future direction for energy-efficient medical
image analysis, though the authors noted the signifi-
cant training time required for such models.

2.6. Diagnosis of Extrapulmonary Pathologies

Finally, the application of these methods is not
limited to the lungs. COVID-19 is a systemic disease,
and associated pathologies like myocarditis are a seri-
ous concern. Nastenko et al. [42] developed a method-
ology to aid in the diagnosis of myocarditis by analyz-
ing structural changes in the heart visible on chest CT
scans (Fig. 4).

c)

Figure 4: An example of an annotated chest CT slice: a - input image; b - a rectangular region of interest; c -
output image. Original images from the authors’ institutional archive (de-identified); not reproduced or adapted
from any published source.
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Using a public dataset [43], their work focused
on texture analysis to build classification models that
could support clinical decision-making for this serious
complication.

2.7. Integration with Virology, Immunology,
and Health Economics

The clinical utility of machine learning in analyz-
ing COVID-19 CT images extends far beyond simple
diagnosis, offering powerful translational bridges to
virology, immunology, and health economics. Quanti-
tative metrics derived from CT scans, such as the per-
centage of affected lung volume or the texture features
of lesions, can serve as non-invasive surrogate end-
points in clinical trials for novel antiviral or immuno-
modulatory therapies. For instance, a measurable re-
duction in computationally defined lung injury could
provide early evidence of a drug's efficacy, helping to
stratify patient cohorts and accelerate therapeutic de-
velopment.

Furthermore, these automated analyses provide
a crucial link to immunology. The radiological patterns
of severe COVID-19 are manifestations of the host's
immune response, with features like extensive consol-
idation often correlating with hyperinflammation and
elevated biomarkers like C-reactive protein and inter-
leukins. Machine learning models can quantify this
immune-mediated damage, offering objective tools to
study disease immunopathology and identify patients
who might benefit from targeted anti-inflammatory
treatments. This aligns with the broader search for re-
liable "correlates of protection” and response, a cen-
tral theme in modern virology and vaccine research
[10,12].

From a health-economics perspective, the impact
is equally significant. Automated, rapid CT severity
scoring enables more efficient resource allocation - a
critical factor during pandemic surges. By providing
objective data for triage, these systems can help hospi-
tals prioritize intensive care unit (ICU) beds, ventila-
tors, and specialized staff for patients with the highest
predicted risk of adverse outcomes [26], thereby op-
timizing patient care and mitigating the economic
burden on healthcare systems.

2.8. Vision-Language and Multimodal Integra-
tion of CT and Textual Data

This theme of integration is now extending from
the combination of different scientific fields to the fu-
sion of different data types, heralding the next frontier
in artificial intelligence development. A significant
trend in medical artificial intelligence is the develop-
ment of multimodal models that integrate medical im-
aging with associated textual information, such as
electronic health records (EHR) and radiology reports.
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In radiology, large vision-language models (VLMs)
trained on paired image-text data are emerging as a
powerful new paradigm. For instance, Li et al. [44] re-
cently introduced "BrainGPT," a multimodal large lan-
guage model designed for 3D brain CT report genera-
tion. By creating a dedicated dataset of CT volumes
with corresponding reports and employing instruction
tuning, their proof-of-concept model generated narra-
tive findings that were indistinguishable from human-
written reports in approximately 74% of cases during
a Turing test. This work demonstrated the feasibility
of applying VLM architectures to volumetric medical
imaging.

Building on such foundational work, research is
expanding to other anatomical regions and larger-
scale models. The development of 3D vision-language
foundation models, exemplified by the Merlin model
for abdominal CT [45], has shown the viability of train-
ing on massive datasets comprising millions of CT slic-
es paired with EHR text. These models learn joint rep-
resentations of imaging and text, enabling a range of
downstream applications, including automated radiol-
ogy report generation, visual question answering
(VQA), and cross-modal retrieval.

The clinical utility of multimodal integration has
been particularly evident in the context of COVID-19,
where combining imaging with clinical data enhances
prognostic accuracy. A study in Nature Communica-
tions [46] demonstrated that a deep learning analysis
of admission chest CT scans, when fused with patients’
clinical variables and laboratory results, significantly
improved the prediction of severe outcomes. This mul-
timodal approach, termed “artificial intelligence-
severity,” outperformed models relying on clinical da-
ta alone, underscoring the complementary prognostic
value of imaging data. Following this principle, other
researchers have developed hybrid pipelines wherein
a convolutional neural network processes the CT scan
while a separate model ingests textual or tabular in-
puts (e.g., symptoms, lab values). The extracted fea-
tures are then fused for tasks such as risk stratifica-
tion. One such hybrid model, designed to predict ICU
admission or mortality using both CT and clinical bi-
omarkers, achieved high accuracy in discriminating
between patient cohorts [47]. These findings consist-
ently show that multimodal designs yield more robust
COVID-19 severity predictions than single-modality
approaches.

The field continues to advance rapidly, with re-
cent reviews noting substantial progress in radiology-
specific report generation models and medical VQA
systems that leverage both visual and linguistic fea-
tures [48]. Concurrently, there is growing interest in
adapting general-purpose VLMs like GPT-4V for medi-
cal applications. While preliminary investigations sug-
gest potential, rigorous quantitative evaluations of
their performance in nuanced CT interpretation tasks
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are still forthcoming [49]. In summary, the fusion of
imaging and textual data through vision-language and
other multimodal architectures represents a signifi-
cant advancement, aiming to create more contextually
aware and clinically integrated decision support sys-
tems.

3. Potential Directions for Further Research
Using Machine Learning

The key findings from the reviewed literature are
consolidated in Table 2, which compares the technical
approaches and clinical impact of notable studies in
the field.

The rapid progress in applying machine learning
to COVID-19 CT analysis has not only addressed im-
mediate clinical needs but has also illuminated a clear
path for future innovation. The limitations of current
models and the emergence of new technologies define
the critical frontiers for the next generation of re-
search.

3.1. Towards Generalization and Out-of-
Distribution Detection

A primary limitation of many models reviewed
here is their narrow training on specific COVID-19 da-
tasets. The next crucial step is to develop more robust
and generalizable systems. This involves training
models on massive, diverse datasets that include not
only COVID-19 but also a wide array of other viral and
bacterial pneumonias, interstitial lung diseases, and
acute respiratory distress syndrome from various
causes. A key research direction is the development of
reliable out-of-distribution (OOD) detection - creating
intelligent systems that can recognize when a case
presents features, they were not trained on (i.e., those
"previously unseen") and flag it for human expert re-
view. This capability is essential for building trustwor-
thy artificial intelligence tools that can be safely de-
ployed in real-world clinical environments where pa-
thologies are varied and unpredictable.

3.2. Longitudinal Modeling for Long COVID
and Extrapulmonary Complications

While our review has highlighted models for de-
tecting Long COVID and myocarditis at single time
points, the true clinical value lies in longitudinal analy-
sis. Future work should focus on developing models
that can process serial CT scans from the same patient
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over months or years. Such systems could quantify the
rate of progression or resolution of pulmonary fibro-
sis, track subtle changes in myocardial texture indica-
tive of chronic inflammation, and provide objective,
non-invasive biomarkers for disease activity. This
would represent a paradigm shift in managing the
long-term sequelae of COVID-19, enabling personal-
ized follow-up and timely therapeutic intervention.

3.3. Predictive Modeling for Post-Infection
Malignancy Risk

Given that chronic inflammation is a well-
established risk factor for carcinogenesis, and severe
COVID-19 involves profound pulmonary inflammation,
a compelling long-term research avenue is the devel-
opment of predictive models for Long COVID compli-
cations like broncho-alveolar lung cancer. Based on
the initial severity and specific texture features of a
patient's CT scan during the acute phase, machine
learning models could be trained to identify cohorts at
the highest risk for future malignant transformation.
This research would require large-scale, long-term fol-
low-up data but holds immense potential for creating
early-warning systems and guiding surveillance strat-
egies in high-risk COVID-19 survivors.

3.4. Advancing Multimodal and Foundation
Models

As we have discussed, multimodal models repre-
sent a cutting-edge frontier. The future in this domain
involves moving beyond simple data fusion to creating
truly synergistic systems. Key directions include:

¢ Refining vision-language models to not only
generate reports but also to highlight discrepancies
between their findings and the official radiologist's re-
port, acting as an intelligent second reader.

¢ Developing VQA systems that can answer com-
plex, context-aware clinical questions (e.g., "Is the fi-
brosis more prominent in the upper lobes compared
to the scan from six months ago?").

¢ Building foundation models that can natively
integrate and reason across imaging (CT), pathology
reports, genomic data, and clinical time-series data to
provide a holistic, patient-specific diagnostic and
prognostic summary.

e A critical challenge for these massive models is
their "black box" nature. Future research must focus
on developing robust explainability (XAI) methods to
make their reasoning transparent and trustworthy to
clinicians.
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Table 2: Summary of key published studies on machine learning for COVID-19 ct analysis
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Machine learning

Key performance

Task . Biological endpoint and clinical impact Ref.
approach metric
. Hybrid classifier: . . -
Classify COVID-19 . Endpoint: differentiating stages of alveo-
. convolutional neural . 1 .
lesion types (GGO, lar/interstitial inflammation. [30,
. network + LSOF + F1-score: 0.96 L1 . s
crazy-paving, con- Impact: aiding early diagnosis (via GGO) and  31]
o GMDH + texture - .
solidation) objective severity assessment.
features
Differentiate Nor- . Accuracy: 1.00 (convo-  Endpoint: distinguishing viral (SARS-CoV-2)
Convolutional neural . -
mal vs. COVID-19 lutional neural vs. other causes of lung injury.
. network, . . . . . o [35]
and Pneumonia vs. Autoencoder network, Pneumonia  Impact: improving diagnostic specificity;
COVID-19 utoencode vs. COVID-19) guiding appropriate therapy selection.
. Endpoint: automated detection of viral
Classify Normal vs. . .
P . Transfer Learning Accuracy: 94.76% pneumonia patterns. 27
neumonia vs. (VGG16, ResNet50) (VGG16) Impact: enabling high-throughput screening ~ 12/]
COVID-19 . . .
and reducing radiologist workload.
Pre-trained net- . . - -
Automated screen- works (DarkNet19) Endpoint: high-fidelity identification of
. ; : Accuracy: 98.91% SARS-CoV-2 lung pathology.
ing of COVID-19 vs. and lightweight . . . . [36]
. (DarkNet19) Impact: enabling rapid, accurate screening
non-COVID convolutional neural . . -
with computationally efficient models.
network
Differentiate acute Ensemble methods l?"ndp oint: quantifying P er51stent.f1brot1c-
COVID-19 vs. Long (RFOCT) with Accuracy: 0.89 like changes vs. acute inflammation. 37]
: . (RFOCT) Impact: identifying patients Long COVID for
COVID lung changes texture analysis
targeted follow-up.
Endpoint: demonstrating that macroscopic
Screen for COVID-19 GLCM texture tissue texture robustly signatures viral lung
. features + Ensemble Accuracy: 100% -
using only texture thods (Rand Random F " injury. [40]
features me (;: s (Random (Random Forest) Impact: validating texture analysis as a
orest) powerful standalone diagnostic approach.
Endpoint: mimicking biological neural pro-
Detect COVID-19 o cessing for image recognition.
. . i Spiking Neural ]
using a biologically F1-score: 0.99 Impact: proof-of-concept for ultra-low- [41]
Lo Network (SNN) .. . .
inspired model power, energy-efficient diagnostic hard-
ware.
Aid in the diagnosis Texture analysis + Endpomt:' de'_cectmg structural changes in
of COVID-19- e myocardial tissue.
. classification Accuracy: ~0.74 ) . . [42]
associated myocar- . Impact: supporting early detection of a ma-
L algorithms . s
ditis from chest CT jor extrapulmonary complication.
) Multimodal artificial Endpoint: fusing imaging biomarkers with
Predict severe out- intelligence: Dee systemic biological data.
comes in COVID-19 gence: Jeep AUC: 0.79 e ‘ [46]
tients learning (CT) + mpact: enhanced prognostic accuracy for
pa clinical/lab variables better patient risk stratification.
) . Hybm.i DL/machine Endpoint: integrated assessment of lung
Predict ICU admis- learning: convolu- damage and svstemic response
sion or death in tional neural net- AUC: 0.94 g' Y p_ L [47]
. . Impact: more robust severity prediction to
COVID-19 patients work (CT) + clinical . e .
. guide critical care resource allocation.
biomarker model
While GPT-4V can Endpoint: probing the zero-shot reasoning
Assess general- o . . . s o 1 )
Quantitative evalua-  identify whatanimage capabilities of general artificial intelligence
purpose VLM . o . . sy
(GPT-4V) on radiol- tion of GPT-4V on is, it cannotreliably in- on medical images. [49]
ogy tasks multi-region imaging  terpret whatis wrong Impact: establishes a baseline for applying

within it

general foundation models in radiology.
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Conclusions

This review has demonstrated that machine
learning has provided a powerful and indispensable
set of tools for navigating the diagnostic challenges of
the COVID-19 pandemic. Across a spectrum of ap-
proaches - from quantitative texture analysis to deep
convolutional neural networks and advanced multi-
modal systems - a clear conclusion emerges: the most
effective diagnostic models are those that integrate da-
ta and techniques. Whether by combining deep learn-
ing features with handcrafted texture biomarkers or
by fusing computed tomography data with clinical
text, these hybrid strategies yield more robust and
clinically relevant insights than single modality ap-
proaches alone.

Crucially, this review underscores that these
computational methods are not mere pattern classifi-
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ers but sophisticated bioengineering tools capable of
quantifying the underlying pathophysiology of viral
lung injury, from initial alveolar exudate to chronic fi-
brotic remodeling. While significant challenges in
model generalization, explainability, and seamless
clinical integration remain, the trajectory of the field is
clear. The ongoing development of foundation models
and multimodal artificial intelligence promises to cre-
ate more holistic, context-aware systems that will not
only redefine diagnostics for future pandemics but al-
so become integral to routine clinical decision support.
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"HaujioHanbHUM TEXHIYHWIN YHIBEPCUTET YKpaiHU « KUTBCLKWIA NOMITEXHIYHMI IHCTUTYT iMeHi Irops Cikopcbkoro», Kuis, Ykpaina
2HauioHanbHui iHCTUTYT pTUsiaTpii i nynbMoHonorii iMei ®.I7. AHoscbkoro HAMH Ykpainu, Kuis, Ykpaina
SMeauynui HayKOBO-AOCNIAHWI IHCTUTYT iMeHi Mupocnasa MoccakoBcekoro, [MNonbcbka akagemis Hayk, Bapwasa, MNonbLa
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OIATHOCTUKA  COVID-19-ACOLIMOBAHOI  KAPAIOMYNIbMOHANBLHOI  MATONOri 3A OAHUMMW KT I3
3ACTOCYBAHHAM LWITYYHOroO IHTENEKTY: oOrngdaa METOAIB | HAMPAMU MNMOAANbLIMX AOCNIMXKEHDb

Mangemis COVID-19 nigkpecnuna BupiwaneHy ponb koMmn'toTepHoi Tomorpadii (KT) y giarHocTuui Ta nikyBaHHi BipyCHOi MHEBMOHIi, BO-
AHoYac CTBOPMBLUM HaaMipHe HaBaHTaXeHHs Ha pagionoriB. MawuHHe HaB4aHHSA (MH) cTano noTyXHVWM BupilleHHAM uiei npobnemu.
Lia ctaTTa npeacTaensie komnnekcHu ornag metogis MH anst astomatusoBaHoro aHanisy COVID-19-acouiioBaHoi kapgionybMoHa-
nbHOI naTornorii 3a gaHumun KT-306paxeHsb.

Mwu y3aranbHIOEMO KNOYOBi pe3ynbTaTu yHAaMeHTanbHUX Ta nepefoBux AochnimkeHb. OCTaHHI JOCATHEHHSI MOKa3yloTb, WO Moaeni
MH, oco6nuBo Ti, L0 NOEAHYOTL FMMOOKe HAaBYAHHS 3 KiNIbKICHUM TEKCTYPHMM aHani3oM, 34aTHi TOYHO KnacudikyBaTu xapakTepHi ypa-
)KEeHHS (Hanpuknag, MaToBe CKIo, KoHconiaauio), AudepeHLiloBaT rocTpy Ta NoCcTKOBIAHY ha3n 3aXBOPHOBAHHA Ta BiAPi3HATU BipyCHY
NMHEBMOHItO Bif iHWKNX cTaHiB. L|i TekcTypHi 6iomapkepu 3abesneyytoTb 06'eKTUBHY OLiHKY 6a30BKX GionoriyHux npouecis, Takux siK anb-
BEONsApHe 3anarneHHs Ta iHTepcTuuianbHuin gibpos.

Y cTatTi po3KpuTO 3B’130K Mix pagionorivHumu natepHamu KT (matoBe ckno, 6pykiBka, koHconigauis, hibpoTuyHi 3miHK) Ta Bignosia-
HUMM BiONOriYHUMU NpOLIECaMU — anbBEOMSPHUM eKCYAaToM, iHTEPCTULLIaNbHUM HaBPSKOM | peMOaentoBaHHAM TKaHUHK. [XHS KinbkicHa
penpeseHTaLis TEKCTYPHUMU Ta MOPOMETPUYHUMK O3Hakamu B mofensx MH cTBopioe HeiHBa3uBHi Giomapkepu, Lo NornuénioTb
po3yMiHHsi naTodpisionorii COVID-19 i nigcuntoloTe KNiHIYHI pilleHHs WoAo cTpaTudikalii Ta MoHITopuHry. MawnbyTHi AocnigkeHHs ma-
10Tb BYTU cnpsiMoBaHi Ha po3pobky Ginblu HaAiHKUX, edPEeKTUBHUX Modenew Ta ix iHTerpauito B KNniHiYHy NpakTuky. ICHye TakoX 3HaYHWI
NnoTeHLian y BUKOPUCTaHHI LMX KifIbKICHWMX iHCTPYMEHTIB AN CTBOPEHHS1 HeiHBa3MBHUX GiomapkepiB AN MOHITOPUHIY MPOrpecyBaHHst
XBOpPOOU, cTpaTudikaLlii NauieHTiB y KNiHIYHUX BUNPOOYBaHHSIX HOBMX TepaneBTUYHUX 3aco6iB Ta NPUAHATTS pilleHb Yy cdepi eKOHOMIKM
OXOPOHU 300POB'S.

KnrouoBi cnoBa: wtyyHuii iHTenekt, COVID-19; koMmn’toTepu3oBaHa AiarHoCcTuka; AMdy3He anbBeonisipHe 3anarsieHHsi; MporpecyBaHHs
3aXBOPIOBAHHS; MalLlMHHE HaBYaHHS; BipyCHa MHEBMOHIsI; nereHeBuii ¢ibpo3s; komn'toTepHa Tomorpadisi.
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