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The COVID-19 pandemic highlighted the critical role of chest computed tomography (CT) in diagnosing and manag-
ing viral pneumonia, while also creating an unsustainable workload for radiologists. Machine learning (ML) has 
emerged as a powerful solution to this challenge. This article provides a comprehensive review of machine learning 
methods for the automated analysis of COVID-19-associated cardiopulmonary pathology on CT images. 
We synthesize key findings from foundational and advanced studies. Recent advances demonstrate that machine 
learning models, particularly those integrating deep learning with quantitative texture analysis, can accurately clas-
sify hallmark lesions (e.g., ground-glass opacity, consolidation), differentiate between acute and Long COVID lung 
changes, and distinguish viral pneumonia from other conditions. These texture-based biomarkers provide objective 
measures of underlying biological processes such as alveolar inflammation and interstitial fibrosis. 
In this review, we elucidate the relationship between CT radiologic patterns (ground-glass opacities, the crazy-
paving pattern, consolidation, and fibrotic changes) and the corresponding biological processes – alveolar exudate, 
interstitial edema, and tissue remodeling. Their quantitative representation via texture and morphometric features 
in machine learning models yields noninvasive biomarkers that deepen understanding of COVID-19 pathophysiolo-
gy and support clinical decision-making for risk stratification and disease monitoring. Future research should focus 
on developing more robust, computationally efficient models and integrating them into clinical workflows. There is 
also great potential in using these quantitative tools to create non-invasive biomarkers for tracking disease progres-
sion, aiding clinical trial stratification for novel therapeutics, and informing health-economic decisions on resource 
allocation. 
Keywords: artificial intelligence; COVID-19; diagnosis, computer-assisted; diffuse alveolar damage; disease pro-
gression; machine learning; pneumonia, viral; pulmonary fibrosis; tomography, x-ray computed 

 

Introduction 

The COVID-19 pandemic, caused by the novel 
coronavirus SARS-CoV-2, precipitated an unprece-
dented global health crisis, placing immense strain on 
diagnostic resources. According to the World Health 
Organization (WHO), by the end of 2024, over 770 mil-
lion confirmed cases and more than 7 million deaths 
had been reported [1]. COVID-19 remains a leading 
cause of mortality among respiratory diseases world-
wide [2].  

Chest computed tomography (CT) rapidly 
emerged as a front-line imaging modality, valued not 
only for its high sensitivity in detecting viral pneumo-
nia [3] but also for its crucial role in assessing disease 
severity, guiding patient triage, and monitoring treat-
ment response [4]. The characteristic radiological pat-
terns observed in COVID-19 – such as ground-glass 
opacities (GGO), consolidation, and the "crazy-paving" 
pattern – are direct visual correlates of the underlying 

pathophysiology [5]. GGO corresponds to partial filling 
of the alveolar spaces with inflammatory exudate or 
fluid and thickening of the lung interstitium, repre-
senting a stage of diffuse alveolar damage where lung 
architecture is still discernible. In contrast, consolida-
tion indicates a more advanced stage of lung injury, 
where alveolar air is completely replaced by patholog-
ical material, rendering the lung tissue dense and 
opaque. However, the sheer volume of CT examina-
tions generated during pandemic peaks created a sig-
nificant diagnostic bottleneck, overwhelming radiolo-
gists and risking delays in clinical decision-making. 
This clinical and logistical challenge underscored the 
urgent need for automated computational tools capa-
ble of rapidly and accurately interpreting these com-
plex imaging findings, thereby setting the stage for the 
widespread application of machine learning in the 
fight against COVID-19. 

The primary objective of this review is to provide 
a critical and comprehensive examination of the ma-
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chine learning methods applied to the diagnosis and 
assessment of COVID-19-associated cardiopulmonary 
pathology from chest CT images. This review synthe-
sizes the evolution of the field, from foundational 
techniques rooted in texture analysis and classical ma-
chine learning to the application of advanced deep 
learning architectures, such as convolutional neural 
networks, and the emerging frontier of multimodal ar-
tificial intelligence. 

Specifically, this review aims to: 
1. Synthesize the state-of-the-art by summarizing 

the key methodologies and performance of influential 
studies. 

2. Bridge the technological and biological do-
mains by emphasizing how computational biomarkers 
derived from CT images correspond to underlying 
pathophysiological processes like alveolar inflamma-
tion and fibrosis. 

3. Critically evaluate the principal limitations and 
challenges of current models, including issues of gen-
eralizability, clinical integration, and computational 
cost. 

4. Identify and delineate promising directions for 
future research aimed at developing more robust, clin-
ically integrated, and impactful diagnostic tools for 
current and future epidemiological crises. 

1. Diagnostic Approaches in COVID-19 

The diagnosis of COVID-19 is a crucial element in 
managing the pandemic. There are several approaches 
to diagnosis, each with its own advantages and limita-
tions depending on the clinical context. 

The polymerase chain reaction (PCR) test is con-
sidered the gold standard for detecting the SARS-CoV-
2 virus [6]. It is a nucleic acid amplification test 
(NAAT) that detects viral RNA through reverse tran-
scription polymerase chain reaction (RT-PCR). For 
PCR testing, a nasopharyngeal swab is taken, and the 
viral RNA is amplified for detection. This method pro-
vides high sensitivity and specificity. According to 
studies, the sensitivity of PCR can reach up to 95% un-
der optimal conditions [7], making it the most reliable 
method for detecting SARS-CoV-2 [8]. However, PCR 
requires specialized laboratory equipment, making it 
less accessible for large-scale screening, especially in 
remote or overburdened regions. 

Antigen tests detect viral proteins (antigens) 
through an enzyme-linked immunosorbent assay 
(ELISA) of a nasopharyngeal or nasal swab. Their main 
advantage is speed: the result is available within 15-30 
minutes, making them useful for mass testing and 
emergency use. However, the sensitivity of antigen 
tests is significantly lower, especially at low viral loads 
or in the early stages of the disease. According to a 
study, the sensitivity of antigen tests ranges from 
88.2% to 89.6% [9]. This means that they are more 

suitable for screening in populations with a high prob-
ability of disease or in cases where a quick result is 
needed. 

Serum immunoglobulin M (IgM) and immuno-
globulin G (IgG) concentrations, quantified through 
standard serological assays, reflect the humoral im-
mune response to pathogens; although these meas-
urements are informative for confirming prior expo-
sure and assessing immune status, they lack the tem-
poral sensitivity required for early‑stage diagnosis or 
definitive confirmation of an active infection. Follow-
ing infection, the immune system initiates antibody 
production. Typically, IgM class antibodies appear 
first, often approximately 5-10 days after infection, 
whereas IgG class antibodies usually reach detectable 
levels later, typically from day 7-14. This inherent de-
lay in the antibody response means that serological 
tests are less suitable for diagnosing acute infection at 
very early stages (e.g., during the first week) com-
pared to methods that directly detect the virus or its 
components. Furthermore, their prognostic value re-
garding the duration of protection remains a subject of 
active research, as evidenced by findings from 2023–
2024 [10-12]. 

The development of automated approaches to 
the diagnosis of infectious diseases has become par-
ticularly important after the emergence of highly 
pathogenic coronaviruses, such as SARS-CoV, MERS-
CoV, and SARS-CoV-2. For example, to combat MERS-
CoV, methods for predicting immune response and 
creating potential vaccines using computational mod-
eling are being actively investigated [13]. Similar ap-
proaches to analyzing viral infections can also be ap-
plied in the development of automated COVID-19 di-
agnostic systems and digital medicine. 

Chest radiography is often used to assess the 
condition of the lungs in patients with COVID-19 
symptoms. X-ray images can reveal signs characteris-
tic of viral and bacterial pneumonia, including bilateral 
lung lesions. Although chest radiography is not as sen-
sitive as CT, it remains a useful method for detecting 
severe forms of pneumonia, especially in settings with 
limited access to CT. According to studies, chest radi-
ography detects abnormalities in 63% of patients with 
moderate to severe COVID-19 [14]. 

Chest CT is a more sensitive method for detecting 
lung lesions caused by COVID-19 compared to chest 
radiography. CT allows the detection of characteristic 
changes in the lungs, such as ground-glass opacities, 
consolidations, and fibrosis, which are typical of viral 
pneumonia. This makes CT an indispensable tool for 
monitoring severe forms of disease. The sensitivity of 
CT for detecting lung lesions in patients with COVID-
19 ranges from 76.25% to 90% [15], making this 
method valuable for assessing disease progression and  
planning treatment [16]. 
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Table 1 compares the diagnostic methods dis-
cussed based on sensitivity, specificity, turnaround 
time, cost, and key advantages/disadvantages. 

While diagnostic methods such as PCR or antigen 
tests directly detect the presence of the virus, CT of-
fers the unique advantage of allowing assessment of 
the extent of lung damage. The high sensitivity of CT, 
combined with the ability to obtain images in real-
time, makes it an important tool in clinical decision-
making. In some patients with low viral load, the ini-
tial PCR test may be false-negative, whereas CT al-
ready captures typical signs of COVID-19 pneumonia 
[17, 18]. Although CT sensitivity is generally high [18-
20], its specificity varies significantly and is typically 
lower than that of PCR [21] and approved SARS-CoV-2 
rapid antigen tests [22]. Thus, it is advisable to use CT 
as an adjunct to laboratory diagnostics and as a means 
of monitoring the course of the disease. 

As research indicates [23, 24], chest CT is the 
most informative method for diagnosing alterations in 
lung architecture in COVID-19 viral pneumonia. Serial 
CT findings demonstrate that the radiological evolu-
tion of pneumonia in COVID-19 correlates with the 
clinical course of the disease [25]. 

With the application of machine learning and 
deep learning methods, the potential of CT as a diag-
nostic tool significantly increases. Studies have shown 

that such algorithms can detect and quantify abnor-
malities on CT images with an accuracy exceeding 
90% [26]. Convolutional neural networks (CNNs), as 
one type of deep learning algorithm, have proven ef-
fective in recognizing COVID-19-specific signs, such as 
ground-glass opacities and consolidations [27]. This 
not only improves diagnostic accuracy but also signifi-
cantly reduces physician workload. 

The authors of reference [28] believe that artifi-
cial intelligence systems, particularly machine learn-
ing, are capable of revolutionizing radiological diag-
nostics, improving detection, increasing diagnostic ac-
curacy, and reducing the time spent on developing di-
agnostic conclusions. 

2. Methodologies and Applications of Machine 
Learning in COVID-19 CT Analysis 

The rapid progression of the COVID-19 pandemic 
necessitated the development of automated tools to 
aid in diagnosis. Machine learning and deep learning 
have become central to this effort, offering powerful 
methods for analyzing chest CT images, which are rich 
in diagnostic information. The literature reflects pro-
gression from foundational techniques to highly spe-
cialized deep learning models for various diagnostic 
tasks.

 

Table 1: Overview and comparison of key diagnostic approaches in COVID-19 

Category 
Specific 
method 

What it detects Sensitivity Specificity Advantages Disadvantages 

Molecular genetic 
methods 

RT-PCR 
SARS-CoV-2 

RNA 
High (up to 

95-98%) 
High 

(>98%) 

"Gold standard" 
for diagnosis 
Early detection 

Requires a labora-
tory 
High cost 
Long turnaround 
time (4-72h) 

Immunological 
methods (based 

on antigen-
antibody reac-

tion) 

Antigen (Ag) 
test 

Viral proteins 
(antigens) 

Moderate 
(highly var-

iable, 50-
95%) 

High 
(>99%) 

Speed (15-30 min) 
Low cost 
Suitable for mass 
screening 

Risk of false-
negative results 
with low viral load 

Antibody 
(Ab) test 

Antibodies (IgM, 
IgG) to the virus 

High (>90% 
after day 

14) 

High 
(>95%) 

Identifies past in-
fection 
Important for epi-
demiological stud-
ies 

Not suitable for 
early diagnosis 
Antibodies appear 
late 

Imaging methods 

Chest radi-
ography 

(CXR) 

Pathological 
lung changes 

(signs of pneu-
monia) 

Moderate 
(~60-80%) 

Low 
(~25-
80%) 

Wide availability 
Speed 
Low cost 

Low informative-
ness in early stag-
es 
Non-specific 
changes 

CT 

Characteristic 
lung changes 

(GGO, consolida-
tion) 

High (80-
99%) 

Low 
(~25-
90%) 

High sensitivity to 
lesions 
Detailed assess-
ment of damage 
extent 

High cost and ra-
diation dose 
Non-specific 
(changes similar 
to other viral 
pneumonias) 
Cannot confirm 
active infection 
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2.1. Early Detection and Lesion Classification 

Initial research focused on identifying and classi-
fying the characteristic lesions (Fig. 1) of COVID-19 
pneumonia, such as GGO, crazy-paving patterns, and 
consolidation.  

A common strategy involves combining tradi-
tional machine learning with deep learning features. 
For instance, Ukrainian researchers developed hybrid 
approaches that utilized texture analysis, specifically 
the gray level co-occurrence matrix (GLCM), to extract 
quantitative features from regions of interest, which 
were then fed into a custom seven-layer convolutional 
neural network for classification [29]. While this 
method proved effective, particularly for GGO identifi-
cation, the authors noted limitations related to small 
patient cohorts and variable accuracy across different 
lesion types, underscoring the need for model refine-
ment. 

Building on this, more sophisticated multi-level 
diagnostic pipelines were proposed. Davydko et al. 
[30, 31] designed a system that integrated convolu-
tional neural networks with other machine learning 
classifiers, such as logistic self-organizing forests 
(LSOF) and the group method of data handling 
(GMDH). This pipeline performed a sequence of tasks: 
first filtering images for signs of COVID-19, then seg-
menting the affected lung areas with a U-Net model 
and finally classifying the specific lesion types. The au-
thors reported high classification efficacy, especially 
for GGO, but highlighted that segmentation accuracy 
and the system's computational complexity remained 
areas for future improvement [31]. 

2.2. The Biological Significance of CT Texture 
Biomarkers 

The machine learning models discussed in this 
review rely on classifying radiological patterns whose 
texture features  are not  arbitrary  mathematical  con- 

structs; rather, they are quantitative descriptors of 
underlying biological processes at the tissue and cellu-
lar level. Understanding this link is fundamental to ap-
preciating their clinical and scientific value [32]. 

2.2.1. Ground-Glass Opacity as a Marker of Early 
Alveolar Injury 

GGO is radiologically defined as a hazy increase 
in lung attenuation that does not obscure the underly-
ing pulmonary vessels. From a biological standpoint, 
GGO represents an early and often reversible stage of 
lung injury. The specific pathophysiology includes the 
partial filling of alveolar spaces with proteinaceous 
fluid, inflammatory cells (exudate), or blood, com-
bined with a thickening of the lung interstitium due to 
edema and cellular infiltration [32]. Texture analysis 
quantifies this state with high precision. Features like 
increased homogeneity and low contrast reflect the 
relatively uniform nature of the fluid-filled alveoli 
compared to the air-tissue interface of healthy lungs. 
Therefore, a texture-based GGO classifier does not 
merely identify a pattern; it quantifies the extent of in-
itial diffuse alveolar damage, providing a sensitive bi-
omarker for the onset of viral pneumonia. 

2.2.2. Consolidation and Crazy-Paving as Indica-
tors of Disease Progression 

As the disease progresses, GGO can evolve into 
consolidation or a crazy-paving pattern. Consolidation 
appears as a dense, uniform opacification that com-
pletely obscures the underlying lung architecture. This 
signifies a more severe stage of injury where the al-
veolar air has been entirely replaced by inflammatory 
exudate, corresponding to advanced diffuse alveolar 
damage (DAD) [32]. Texture algorithms detect this as 
a highly homogeneous region with very low internal 
contrast. The crazy-paving pattern, consisting of GGO 
superimposed with thickened interlobular septa, re-
flects a dual pathology: the GGO signifies alveolar fill-
ing, while the linear septal thickening indicates pro-
nounced interstitial edema. Computationally, this is a 
highly heterogeneous pattern, captured by texture 

 

    
a)         b)    c) 

Figure 1: Examples of chest CT slices with: a – ground-glass opacity; b – crazy-paving pattern; c – consolidation. 
Original images from the authors’ institutional archive (de-identified); not reproduced or adapted from any pub-
lished source. 
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a) b) c) 
Figure 2: Examples of chest CT slices: a – normal; b – with pneumonia; c – with COVID-19. Original images from 
the authors’ institutional archive (de-identified); not reproduced or adapted from any published source. 

features like high entropy and contrast. A model that 
differentiates these patterns is thus distinguishing be-
tween stages of inflammatory progression, from par-
tial alveolar flooding (GGO) to complete flooding (con-
solidation) and combined alveolar-interstitial edema 
(crazy-paving). 

2.2.3. Fibrotic-like Changes as Signatures of Tissue 
Remodeling and Scarring 

In the post-acute phase, particularly in Long 
COVID, the lung can undergo a process of mal-adaptive 
repair, leading to permanent fibrotic-like changes [33]. 
These include reticulations, traction bronchiectasis, 
and honeycombing, which represent irreversible ar-
chitectural distortion. Biologically, this is driven by the 
persistent activation of fibroblasts, leading to exces-
sive deposition of collagen and other extracellular ma-
trix proteins, which results in lung scarring and stiff-
ening [34]. This process is often accompanied by mi-
crovascular injury and remodeling, impairing gas ex-
change. Texture analysis excels at quantifying this 
structural disarray. Features that measure heteroge-
neity, randomness (entropy), and the presence of 
sharp edges and lines are highly sensitive to these 
changes. Consequently, machine learning models 
trained on these texture biomarkers can objectively 
measure the degree of established fibrosis, offering a 
powerful tool for prognostication and monitoring the 
long-term sequelae of severe COVID-19. 

2.3. Differential Diagnosis 

A critical clinical task is the differentiation of 
COVID-19 from other respiratory conditions with 
similar radiological presentations. To address this, Yu-
khymiuk et al. [35] conducted a comparative analysis 
using both CNNs and autoencoders to distinguish be-
tween normal, bacterial pneumonia, and COVID-19 
chest CT scans (Fig. 2). Their work demonstrated the 
superior classification performance of convolutional 
neural networks over autoencoders for this task, while 

also acknowledging the potential for model overfitting 
and the need for more robust data handling, for in-
stance by incorporating segmentation. 

This line of research is well-represented in inter-
national literature. Mishra et al. [27] applied transfer 
learning using established convolutional neural net-
work architectures, VGG16 and ResNet50, to classify 
CT scans as normal, pneumonia, or COVID-19. They 
achieved excellent results, particularly in the binary 
task of distinguishing COVID-19 from normal scans 
and used techniques like data augmentation and 
cross-validation to ensure model robustness. Similar-
ly, Gupta and Bajaj [36] evaluated pre-trained models 
like MobileNetV2 and DarkNet19, finding that Dark-
Net19 was exceptionally accurate for COVID-19 
screening. They also proposed a novel lightweight 
model that could reduce training time while maintain-
ing high performance, a crucial factor for clinical de-
ployment.  

2.4. Tracking Disease Progression and Long 
COVID 

Beyond initial diagnosis, machine learning offers 
tools to monitor disease progression and identify long-
term sequelae, or "Long COVID." Lutchenko et al. [37] 
specifically focused on creating models to distinguish 
between the acute phase of COVID-19 and the persis-
tent changes of Long COVID on CT images (Fig. 3). 

Their methodology involved U-Net-based lung 
segmentation followed by texture analysis and classi-
fication with various ensemble machine learning algo-
rithms [38]. Among the tested methods, the random 
forest of optimal complexity trees (RFOCT) [39] was 
identified as highly effective, showcasing the potential 
of machine learning to quantify subtle, persistent 
structural lung changes [37].  

The clinical relevance of this research is support-
ed by systematic reviews and meta-analyses. For ex-
ample, a review by Babar et al. [33] of short- and long-
term CT findings confirmed that while abnormalities



 Innov Biosyst Bioeng, 2025, vol. 9, no. 4                                                                                                                    21   

 

    
a) b) 
Figure 3: Examples of chest CT slices: a – with signs of COVID-19; b – with signs of Long COVID. Original images 
from the authors’ institutional archive (de-identified); not reproduced or adapted from any published source. 
 
like GGO decrease over time, fibrotic-like changes can 
persist for two or more years post-infection, especially 
in patients who had severe disease. This provides a 
strong clinical basis for developing computational 
tools to track and manage post-COVID pathology. 

2.5. Advanced Architectures and Novel Ap-
proaches 

Researchers have also explored beyond standard 
convolutional neural networks to improve perfor-
mance and efficiency. Godbin and Jasmine [40] 
demonstrated that strong results could be achieved 
using only GLCM-derived texture features (contrast, 
homogeneity, etc.) coupled with ensemble classifiers 
like random forest, XGBoost, and LightGBM. Their 
random forest model reached near-perfect classifica-
tion accuracy on a public dataset, highlighting the 
power of well-engineered features. 

In a move towards more computationally effi-
cient hardware, Garain et al. [41] proposed a novel 

approach using a deep convolutional spiking neural 
network (SNN). SNNs mimic biological neurons more 
closely and can operate on low-power neuromorphic 
chips. Their potential-dependent SNN model outper-
formed traditional deep learning models like VGG16 
and ResNet on a COVID-19 detection task, suggesting a 
promising future direction for energy-efficient medical 
image analysis, though the authors noted the signifi-
cant training time required for such models. 

2.6. Diagnosis of Extrapulmonary Pathologies 

Finally, the application of these methods is not 
limited to the lungs. COVID-19 is a systemic disease, 
and associated pathologies like myocarditis are a seri-
ous concern. Nastenko et al. [42] developed a method-
ology to aid in the diagnosis of myocarditis by analyz-
ing structural changes in the heart visible on chest CT 
scans (Fig. 4).   

 

 
a) b) c) 
Figure 4: An example of an annotated chest CT slice: a – input image; b – a rectangular region of interest; c – 
output image. Original images from the authors’ institutional archive (de-identified); not reproduced or adapted 
from any published source. 
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Using a public dataset [43], their work focused 
on texture analysis to build classification models that 
could support clinical decision-making for this serious 
complication. 

2.7. Integration with Virology, Immunology, 
and Health Economics 

The clinical utility of machine learning in analyz-
ing COVID-19 CT images extends far beyond simple 
diagnosis, offering powerful translational bridges to 
virology, immunology, and health economics. Quanti-
tative metrics derived from CT scans, such as the per-
centage of affected lung volume or the texture features 
of lesions, can serve as non-invasive surrogate end-
points in clinical trials for novel antiviral or immuno-
modulatory therapies. For instance, a measurable re-
duction in computationally defined lung injury could 
provide early evidence of a drug's efficacy, helping to 
stratify patient cohorts and accelerate therapeutic de-
velopment. 

Furthermore, these automated analyses provide 
a crucial link to immunology. The radiological patterns 
of severe COVID-19 are manifestations of the host's 
immune response, with features like extensive consol-
idation often correlating with hyperinflammation and 
elevated biomarkers like C-reactive protein and inter-
leukins. Machine learning models can quantify this 
immune-mediated damage, offering objective tools to 
study disease immunopathology and identify patients 
who might benefit from targeted anti-inflammatory 
treatments. This aligns with the broader search for re-
liable "correlates of protection" and response, a cen-
tral theme in modern virology and vaccine research 
[10, 12]. 

From a health-economics perspective, the impact 
is equally significant. Automated, rapid CT severity 
scoring enables more efficient resource allocation – a 
critical factor during pandemic surges. By providing 
objective data for triage, these systems can help hospi-
tals prioritize intensive care unit (ICU) beds, ventila-
tors, and specialized staff for patients with the highest 
predicted risk of adverse outcomes [26], thereby op-
timizing patient care and mitigating the economic 
burden on healthcare systems. 

2.8. Vision–Language and Multimodal Integra-
tion of CT and Textual Data 

This theme of integration is now extending from 
the combination of different scientific fields to the fu-
sion of different data types, heralding the next frontier 
in artificial intelligence development. A significant 
trend in medical artificial intelligence is the develop-
ment of multimodal models that integrate medical im-
aging with associated textual information, such as 
electronic health records (EHR) and radiology reports. 

In radiology, large vision–language models (VLMs) 
trained on paired image-text data are emerging as a 
powerful new paradigm. For instance, Li et al. [44] re-
cently introduced "BrainGPT," a multimodal large lan-
guage model designed for 3D brain CT report genera-
tion. By creating a dedicated dataset of CT volumes 
with corresponding reports and employing instruction 
tuning, their proof-of-concept model generated narra-
tive findings that were indistinguishable from human-
written reports in approximately 74% of cases during 
a Turing test. This work demonstrated the feasibility 
of applying VLM architectures to volumetric medical 
imaging. 

Building on such foundational work, research is 
expanding to other anatomical regions and larger-
scale models. The development of 3D vision–language 
foundation models, exemplified by the Merlin model 
for abdominal CT [45], has shown the viability of train-
ing on massive datasets comprising millions of CT slic-
es paired with EHR text. These models learn joint rep-
resentations of imaging and text, enabling a range of 
downstream applications, including automated radiol-
ogy report generation, visual question answering 
(VQA), and cross-modal retrieval. 

The clinical utility of multimodal integration has 
been particularly evident in the context of COVID-19, 
where combining imaging with clinical data enhances 
prognostic accuracy. A study in Nature Communica-
tions [46] demonstrated that a deep learning analysis 
of admission chest CT scans, when fused with patients’ 
clinical variables and laboratory results, significantly 
improved the prediction of severe outcomes. This mul-
timodal approach, termed “artificial intelligence-
severity,” outperformed models relying on clinical da‑
ta alone, underscoring the complementary prognostic 
value of imaging data. Following this principle, other 
researchers have developed hybrid pipelines wherein 
a convolutional neural network processes the CT scan 
while a separate model ingests textual or tabular in-
puts (e.g., symptoms, lab values). The extracted fea-
tures are then fused for tasks such as risk stratifica-
tion. One such hybrid model, designed to predict ICU 
admission or mortality using both CT and clinical bi-
omarkers, achieved high accuracy in discriminating 
between patient cohorts [47]. These findings consist-
ently show that multimodal designs yield more robust 
COVID-19 severity predictions than single-modality 
approaches. 

The field continues to advance rapidly, with re-
cent reviews noting substantial progress in radiology-
specific report generation models and medical VQA 
systems that leverage both visual and linguistic fea-
tures [48]. Concurrently, there is growing interest in 
adapting general-purpose VLMs like GPT-4V for medi-
cal applications. While preliminary investigations sug-
gest potential, rigorous quantitative evaluations of 
their performance in nuanced CT interpretation tasks 
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are still forthcoming [49]. In summary, the fusion of 
imaging and textual data through vision–language and 
other multimodal architectures represents a signifi-
cant advancement, aiming to create more contextually 
aware and clinically integrated decision support sys-
tems. 

3. Potential Directions for Further Research 
Using Machine Learning 

The key findings from the reviewed literature are 
consolidated in Table 2, which compares the technical 
approaches and clinical impact of notable studies in 
the field.  

The rapid progress in applying machine learning 
to COVID-19 CT analysis has not only addressed im-
mediate clinical needs but has also illuminated a clear 
path for future innovation. The limitations of current 
models and the emergence of new technologies define 
the critical frontiers for the next generation of re-
search.  

3.1. Towards Generalization and Out-of-
Distribution Detection 

A primary limitation of many models reviewed 
here is their narrow training on specific COVID-19 da-
tasets. The next crucial step is to develop more robust 
and generalizable systems. This involves training 
models on massive, diverse datasets that include not 
only COVID-19 but also a wide array of other viral and 
bacterial pneumonias, interstitial lung diseases, and 
acute respiratory distress syndrome from various 
causes. A key research direction is the development of 
reliable out-of-distribution (OOD) detection – creating 
intelligent systems that can recognize when a case 
presents features, they were not trained on (i.e., those 
"previously unseen") and flag it for human expert re-
view. This capability is essential for building trustwor-
thy artificial intelligence tools that can be safely de-
ployed in real-world clinical environments where pa-
thologies are varied and unpredictable. 

3.2. Longitudinal Modeling for Long COVID 
and Extrapulmonary Complications 

While our review has highlighted models for de-
tecting Long COVID and myocarditis at single time 
points, the true clinical value lies in longitudinal analy-
sis. Future work should focus on developing models 
that can process serial CT scans from the same patient  

 

 

 

over months or years. Such systems could quantify the 
rate of progression or resolution of pulmonary fibro-
sis, track subtle changes in myocardial texture indica-
tive of chronic inflammation, and provide objective, 
non-invasive biomarkers for disease activity. This 
would represent a paradigm shift in managing the 
long-term sequelae of COVID-19, enabling personal-
ized follow-up and timely therapeutic intervention.  

3.3. Predictive Modeling for Post-Infection 
Malignancy Risk 

Given that chronic inflammation is a well-
established risk factor for carcinogenesis, and severe 
COVID-19 involves profound pulmonary inflammation, 
a compelling long-term research avenue is the devel-
opment of predictive models for Long COVID compli-
cations like broncho-alveolar lung cancer. Based on 
the initial severity and specific texture features of a 
patient's CT scan during the acute phase, machine 
learning models could be trained to identify cohorts at 
the highest risk for future malignant transformation. 
This research would require large-scale, long-term fol-
low-up data but holds immense potential for creating 
early-warning systems and guiding surveillance strat-
egies in high-risk COVID-19 survivors. 

3.4. Advancing Multimodal and Foundation 
Models 

As we have discussed, multimodal models repre-
sent a cutting-edge frontier. The future in this domain 
involves moving beyond simple data fusion to creating 
truly synergistic systems. Key directions include:  

• Refining vision-language models to not only 
generate reports but also to highlight discrepancies 
between their findings and the official radiologist's re-
port, acting as an intelligent second reader. 

• Developing VQA systems that can answer com-
plex, context-aware clinical questions (e.g., "Is the fi-
brosis more prominent in the upper lobes compared 
to the scan from six months ago?"). 

• Building foundation models that can natively 
integrate and reason across imaging (CT), pathology 
reports, genomic data, and clinical time-series data to 
provide a holistic, patient-specific diagnostic and 
prognostic summary. 

• A critical challenge for these massive models is 
their "black box" nature. Future research must focus 
on developing robust explainability (XAI) methods to 
make their reasoning transparent and trustworthy to 
clinicians. 
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Table 2: Summary of key published studies on machine learning for COVID-19 ct analysis 

Task 
Machine learning 

approach 
Key performance  

metric 
Biological endpoint and clinical impact Ref. 

Classify COVID-19 
lesion types (GGO, 
crazy-paving, con-

solidation) 

Hybrid classifier: 
convolutional neural 

network + LSOF + 
GMDH + texture  

features 

F1-score: 0.96 

Endpoint: differentiating stages of alveo-
lar/interstitial inflammation.  
Impact: aiding early diagnosis (via GGO) and 
objective severity assessment. 

[30, 
31] 

Differentiate Nor-
mal vs. COVID-19 

and Pneumonia vs. 
COVID-19 

Convolutional neural 
network,  

Autoencoder 

Accuracy: 1.00 (convo-
lutional neural  

network, Pneumonia 
vs. COVID-19) 

Endpoint: distinguishing viral (SARS-CoV-2) 
vs. other causes of lung injury. 
Impact: improving diagnostic specificity; 
guiding appropriate therapy selection. 

[35] 

Classify Normal vs. 
Pneumonia vs. 

COVID-19 

Transfer Learning 
(VGG16, ResNet50) 

Accuracy: 94.76% 
(VGG16) 

Endpoint: automated detection of viral 
pneumonia patterns. 
Impact: enabling high-throughput screening 
and reducing radiologist workload. 

[27] 

Automated screen-
ing of COVID-19 vs. 

non-COVID 

Pre-trained net-
works (DarkNet19) 

and lightweight  
convolutional neural 

network 

Accuracy: 98.91% 
(DarkNet19) 

Endpoint: high-fidelity identification of 
SARS-CoV-2 lung pathology. 
Impact: enabling rapid, accurate screening 
with computationally efficient models. 

[36] 

Differentiate acute 
COVID-19 vs. Long 

COVID lung changes 

Ensemble methods 
(RFOCT) with  

texture analysis 

Accuracy: 0.89 
(RFOCT) 

Endpoint: quantifying persistent fibrotic-
like changes vs. acute inflammation. 
Impact: identifying patients Long COVID for 
targeted follow-up. 

[37] 

Screen for COVID-19 
using only texture 

features 

GLCM texture  
features + Ensemble 
methods (Random 

Forest) 

Accuracy: 100%  
(Random Forest) 

Endpoint: demonstrating that macroscopic 
tissue texture robustly signatures viral lung 
injury. 
Impact: validating texture analysis as a 
powerful standalone diagnostic approach. 

[40] 

Detect COVID-19  
using a biologically  

inspired model 

Spiking Neural  
Network (SNN) 

F1-score: 0.99 

Endpoint: mimicking biological neural pro-
cessing for image recognition. 
Impact: proof-of-concept for ultra-low-
power, energy-efficient diagnostic hard-
ware. 

[41] 

Aid in the diagnosis 
of COVID-19-

associated myocar-
ditis from chest CT 

Texture analysis + 
classification  

algorithms 
Accuracy: ~0.74 

Endpoint: detecting structural changes in 
myocardial tissue. 
Impact: supporting early detection of a ma-
jor extrapulmonary complication. 

[42] 

Predict severe out-
comes in COVID-19 

patients 

Multimodal artificial 
intelligence: Deep 

learning (CT) +  
clinical/lab variables 

AUC: 0.79 

Endpoint: fusing imaging biomarkers with 
systemic biological data. 
Impact: enhanced prognostic accuracy for 
better patient risk stratification. 

[46] 

Predict ICU admis-
sion or death in 

COVID-19 patients 

Hybrid DL/machine 
learning: convolu-
tional neural net-

work (CT) + clinical 
biomarker model 

AUC: 0.94 

Endpoint: integrated assessment of lung 
damage and systemic response. 
Impact: more robust severity prediction to 
guide critical care resource allocation. 

[47] 

Assess general-
purpose VLM  

(GPT-4V) on radiol-
ogy tasks 

Quantitative evalua-
tion of GPT-4V on 

multi-region imaging 

While GPT-4V can 
identify what an image 
is, it cannot reliably in-
terpret what is wrong 

within it 

Endpoint: probing the zero-shot reasoning 
capabilities of general artificial intelligence 
on medical images. 
Impact: establishes a baseline for applying 
general foundation models in radiology. 

[49] 
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Conclusions 

This review has demonstrated that machine 
learning has provided a powerful and indispensable 
set of tools for navigating the diagnostic challenges of 
the COVID-19 pandemic. Across a spectrum of ap-
proaches – from quantitative texture analysis to deep 
convolutional neural networks and advanced multi-
modal systems – a clear conclusion emerges: the most 
effective diagnostic models are those that integrate da-
ta and techniques. Whether by combining deep learn-
ing features with handcrafted texture biomarkers or 
by fusing computed tomography data with clinical 
text, these hybrid strategies yield more robust and 
clinically relevant insights than single modality ap-
proaches alone.  

Crucially, this review underscores that these 
computational methods are not mere pattern classifi-

ers but sophisticated bioengineering tools capable of 
quantifying the underlying pathophysiology of viral 
lung injury, from initial alveolar exudate to chronic fi-
brotic remodeling. While significant challenges in 
model generalization, explainability, and seamless 
clinical integration remain, the trajectory of the field is 
clear. The ongoing development of foundation models 
and multimodal artificial intelligence promises to cre-
ate more holistic, context-aware systems that will not 
only redefine diagnostics for future pandemics but al-
so become integral to routine clinical decision support. 
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ДІАГНОСТИКА COVID-19-АСОЦІЙОВАНОЇ КАРДІОПУЛЬМОНАЛЬНОЇ ПАТОЛОГІЇ ЗА ДАНИМИ КТ ІЗ 
ЗАСТОСУВАННЯМ ШТУЧНОГО ІНТЕЛЕКТУ: ОГЛЯД МЕТОДІВ І НАПРЯМИ ПОДАЛЬШИХ ДОСЛІДЖЕНЬ  
 
Пандемія COVID-19 підкреслила вирішальну роль комп'ютерної томографії (КТ) у діагностиці та лікуванні вірусної пневмонії, во-
дночас створивши надмірне навантаження на радіологів. Машинне навчання (МН) стало потужним вирішенням цієї проблеми. 
Ця стаття представляє комплексний огляд методів МН для автоматизованого аналізу COVID-19-асоційованої кардіопульмона-

льної патології за даними КТ-зображень. 
Ми узагальнюємо ключові результати фундаментальних та передових досліджень. Останні досягнення показують, що моделі 
МН, особливо ті, що поєднують глибоке навчання з кількісним текстурним аналізом, здатні точно класифікувати характерні ура-

ження (наприклад, матове скло, консолідацію), диференціювати гостру та постковідну фази захворювання та відрізняти вірусну 
пневмонію від інших станів. Ці текстурні біомаркери забезпечують об'єктивну оцінку базових біологічних процесів, таких як аль-
веолярне запалення та інтерстиціальний фіброз. 

У статті розкрито зв’язок між радіологічними патернами КТ (матове скло, бруківка, консолідація, фібротичні зміни) та відповід-
ними біологічними процесами – альвеолярним ексудатом, інтерстиціальним набряком і ремоделюванням тканини. Їхня кількісна 
репрезентація текстурними та морфометричними ознаками в моделях МН створює неінвазивні біомаркери, що поглиблюють 

розуміння патофізіології COVID-19 і підсилюють клінічні рішення щодо стратифікації та моніторингу. Майбутні дослідження ма-
ють бути спрямовані на розробку більш надійних, ефективних моделей та їх інтеграцію в клінічну практику. Існує також значний 
потенціал у використанні цих кількісних інструментів для створення неінвазивних біомаркерів для моніторингу прогресування 

хвороби, стратифікації пацієнтів у клінічних випробуваннях нових терапевтичних засобів та прийняття рішень у сфері економіки 
охорони здоров'я. 

Ключові слова: штучний інтелект; COVID-19; комп’ютеризована діагностика; дифузне альвеолярне запалення; прогресування 
захворювання; машинне навчання; вірусна пневмонія; легеневий фіброз; комп’ютерна томографія.  
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