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Background. The classical in vitro and in vivo methods developed and widely used in the past decades to as-
sess the genetic effects of environmental factors are complex in view of their implementation, are expensive,
long-lasting, have the problem of reproducibility of the results of experiment in different laboratories and
may face ethical problems of using warm-blooded animals in experiments.

Objective. Development, optimisation and testing of effective in silico models for assessment of Ames muta-
genicity of environmental factors.

Methods. The genetic assessment of the impact of environmental factors was carried out in accordance with
a set of chemical compounds for which information on potential mutagenic activity was obtained experimen-
tally, using the in vitro Ames Salmonella/microsome test. Four machine learning models were developed to
solve the problem of binary classification to form two classes of xenobiotics (mutagen/non-mutagen). The
total sample is represented by a set of 8,083 xenobiotics.

Results. We developed four machine learning models with 85% accuracy, matching the reproducibility of
Ames test data across laboratories. In addition, we have proposed a binary classifier that subject to dimen-
sionality reduction of the input data, taking into account the qualitative composition of molecular descrip-
tors, allows us to improve the accuracy of in silico prediction of genotoxicity of chemicals.

Conclusions. The necessity of updating and expanding the list of effective and more productive methods and
approaches for assessing the genotoxic effects of environmental factors is substantiated, which allows avoi-
ding the use of warm-blooded animals in the experiment, saving time and reducing the number of false-
negative and false-positive results. The possibility of increase the accuracy of predictive machine learning
models for assessing the genotoxic potential of environmental factors in conditions of dimensionality reduc-
tion of the data set is presented.
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Introduction

Over the past few decades, due to scientific
and technological progress, there has been an ex-
ponential increase in the number of chemical com-
pounds released into the environment that can af-
fect the human genetic apparatus. In August 2024,
the number of registered xenobiotics, information
on which is stored on the servers of the American
Chemical Society, was more than 280 million sub-
stances. As of the beginning of 2020, information
was available on more than 100,000 chemicals pro-
duced by industry that can adversely affect the en-
vironment and human health, and, in particular,
genetic health [1].

One of the main features of chemical hazards
is their ability to interact with hereditary material,
which can initiate the development of various ge-
netic and oncological diseases [2—5]. Despite the
fact that the issue of genetic and carcinogenic safe-
ty is receiving a lot of attention, the public and the

scientific community concern about the fact that
information on the specific biological effects of a
large number of compounds is, on the one hand,
insufficiently studied, and on the other hand, the
results of studies on such xenobiotics have been
either contradictory or obtained with significant
limitations on the final genetic effects. Another
significant drawback is the fact that a large number
of chemicals (especially medicines, various food
additives, cosmetics, household chemicals) are reg-
istered without conducting researches on genetic
assessment of impact on the environment and the
human genetic apparatus [6—8]. Significant limita-
tions in the assessment of genetic effects of poten-
tial genotoxic compounds are associated with the
necessity to take into account the main provisions
of the "3R" concept in vivo fests, which is guided
by the principles aimed at reducing, improving and
replacing animal models [9, 10]. The standardised
invitro [11—14] and invivo [15—20] genotoxicity
assessment methods approved by the Organisation

© The Author(s) 2025. Published by Igor Sikorsky Kyiv Polytechnic Institute.

This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which permits
re-use, distribution, and reproduction in any medium, provided the original work is properly cited.



Innov Biosyst Bioeng, 2025, vol. 9, no. 2

for Economic Co-operation and Development and
accepted by the scientific community in conditions
of the extremely rapid expansion of the chemical
space do not allow us to obtain information on the
mutagenic potential of a large number of substan-
ces — potential mutagens — released into the envi-
ronment [21, 22]. In addition, the drawbacks of
the standard battery testing systems [23, 24] for de-
termining genotoxicity also include the complexity
of testing, the rather high cost of research, and the
ethical problems of using warm-blooded animals,
which contradict the provisions of the "3R" con-
cept. The problem of reproducibility of the expe-
riment is related to the diversity of batches of cul-
ture media, as well as the subjective factor, which
is a major obstacle to obtaine objective results in
assessing the genotoxic potential of environmental
factors.

Among the various in vitro and in vivo experi-
mental methods for genetic assessment of the im-
pact of environmental factors, invitro the Ames
test deserves special attention. The Ames test is
used by almost all laboratories around the world to
detect and assess the genetic activity of environ-
mental factors. In addition, for more than 50 years
of using this method, a sufficiently large amount of
experimental material has been obtained as to the
number of chemical compounds tested, which can
be used to develop more efficient and modern
in silico models for assessing the Ames mutagenicity
of environmental factors. In accordance with the
recommendations of the Organisation for Econo-
mic Co-operation and Development, five strains of
Salmonella typhimurium are used to assess muta-
genic potential (TA1535, TA1537, TA98, TA100,
TA102) [11]. The increased interest of the scien-
tific community in this method of genotoxicity
testing is also due to the "Guidelines on Genotox-
icity Testing and Data Interpretation for Pharma-
ceuticals for Human Use" ICH S2(R1) adopted in
2012 by the International Council on Harmonisa-
tion of Technical Requirements for Registration of
Pharmaceuticals for Human Use, which presented
two theoretically justified schemes for the use of
in vitro and in vivo batteries of standard testing sys-
tems for genotoxicity determination, each of which
included the Ames test [25].

The development of information technologies
and artificial intelligence systems, as well as ad-
vances in computer science, computational mole-
cular biology and chemoinformatics, have become
a reliable foundation for further activation of the
scientific community to resolve the urgent issues of
modern computational toxicology. The result of
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these processes became a significant paradigm shift
in genotoxicity testing, which is associated with the
development, testing and implementation of mod-
ern in silico QSAR models for assessing the geno-
toxic effects of environmental factors. The abbrevi-
ation QSAR (Quantitative Structure-Activity Rela-
tionship) is used in the scientific literature to de-
note models of quantitative structure-activity rela-
tionship. Within the task solution to obtain a ge-
netic assessment of the impact of environmental
factors, the abbreviation QSAR combines methods
that allow us to predict the activity (mutagenicity)
of a xenobiotic according to its structure, which is
given by a set of molecular descriptors. The in-
creased interest of scientists in the development of
effective in silico models can be traced in scientific
papers [26—30]. Despite the sufficient attention of
researchers to the creation of QSAR models for de-
termining genotoxic potential, the number of scien-
tific papers in this area of research has not de-
creased over the past 5 years, but has even incre-
ased. This trend is determined by the high predic-
tive potential of in silico models. The Ames/QSAR
predictive models that use the in vitro Ames test re-
sults for various xenobiotics as input data deserve
special attention. An interesting fact is that for the
Ames/QSAR models described in the scientific li-
terature, the problem of improving the quality of
classification for chemical compounds that may
exhibit potential genotoxic properties needs to be
resolved. In this situation, the prospects for im-
proving the predictive capability of in silico models
can be realised by covering a larger number of
chemical compounds, using various balanced sets
of molecular descriptors, 2-D digital structure im-
press, applying long-term predictive QSAR models
and implementing approaches to optimise them.

Taking into account the sufficiently large po-
tential of machine learning models and the pecu-
liarities of the input data used to obtain a genetic
assessment of the impact of environmental factors,
the most quality models in view of predicting of
mutagenicity, the Ames/QSAR models can be ob-
tained by reducing the set of molecular descriptors
and selecting those predictors that have a signifi-
cant impact on the predicted variable.

Materials and Methods

In creating of in silico machine learning mod-
els, we used a dataset [31] obtained by combining
three publicly available datasets: Kazius-Bursi [32],
Hansen [33] and EFSA [34]. According to the da-
taset containing 8,083 xenobiotics, any chemical
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compound was considered mutagenic if at least one
positive result was obtained in the in vitro the Ames
test on S. typhimurium strains TA97, TA98, TA100,
TA102, TA1535, TA1537 and TA1538. For the
Ames/QSAR predictive models, a set of 1,442 de-
scriptors for each potential environmental pollutant
was used, obtained in accordance with the linear
SMILES notation, using the PaDEL software [31].

Data pre-processing for Ames/QSAR machine
learning models involves a standard procedure of
their normalisation taking into account the stan-
dard range of values from [0.1] and z-normalisa-
tion, which allows us to remove anomalous values.
At the stage of data preparation, the column "Ca-
nonical SMILES", which contains textual informa-
tion about the structure of the molecule that is not
used for modelling, was removed. Columns with
identical values were also removed as this informa-
tion would not be informative for machine learning
models. In order to avoid multicollinearity and re-
duce the data dimensionality, correlated features
were also removed when two or more features have
a high correlation (more than 0.95) according to
the Pearson correlation coefficient. In in silico ma-
chine learning models, the used data was divided
into training and test sets in the ratio of 75/25, re-
spectively.

Four machine learning models have been pro-
posed to solve the binary classification problem:
logistic regression (LR-Scikit), logistic regression
using stochastic gradient descent (LR-SGD), ran-
dom forest method, and neural network.

For the logistic regression (Scikit-learn library),
most of the model setup parameters were used by
default. The problem of unbalanced representation
of two classes of xenobiotics (mutagen/non-muta-
gen), which may affect the quality of classification
of the less represented class, was solved by setting
class_weight="balanced". At the same time, weigh-
ting factors were calculated for each class to ensure
an equal impact at the model training stage.

Logistic regression (LR-SGD) uses the sto-
chastic gradient descent (SGD) method to opti-
mise the parameters of the Ames/QSAR model.
The ease of SGD implementation is the basis for
expanding the horizons of its application in ma-
chine and deep learning models [35]. The maxi-
mum performance of SGD is achieved by updating
the model parameters on each individual data
sample or a small group of samples (batches). In
our proposed Ames/QSAR LR-SGD machine lear-
ning model, 64 samples from the training dataset
were used to update the model parameters. The lo-
gistic regression model was implemented through
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an architecture based on the Sequential class of the
TensorFlow library, which allows us to create mod-
els consisting of a sequence of layers. To solve the
binary classification problem, we chose a simple
architecture that included only one (Dense) layer
with one output. After passing through the Dense
layer, the weights and offsets are calculated based
on the input data. The model receives input data
in the form of a matrix, where each row represents
an observation and each column represents a fea-
ture. The sigmoid was chosen as the activation
function, which converts a linear combination of
features into a probability that a certain chemical
compound belongs to one of two classes — muta-
gen or non-mutagen. The process of effective trai-
ning model involves optimization the loss function,
which minimises the difference between the pre-
dicted probability value and the actual result of the
mutagenic potential assessment of a particular
xenobiotica. To solve the problem of binary classi-
fication in the context of genotoxic potential as-
sessment, it was proposed to use the loss function
binary_crossentropy.

The RandomForestClassifier class of the Scikit-
learn Pyton library was used to implement the
Ames/QSAR random forest model. The random
forest model was represented by 200 trees,
(n_estimators=200), with a maximum number of
leaves equal to 600 (max_leaf nodes=600).

The structure of the neural network consists
of an input layer, an output layer, and 4 hidden
layers containing 128, 256, 128, and 64 neurons,
respectively. The ReLU function was selected as
the activation function for the hidden layers, which
has the advantages of relative simplicity of imple-
mentation and allows us to effectively solve the
problem of the vanishing gradient. At the output
layer, the activation function is Sigmoid, which
makes it possible to obtain the probability of xeno-
biotics belonging to one of two classes (muta-
gen/non-mutagen). To solve the standard neural
network problem connected with the L/ and L2
methods and Dropout regularisation were used. In
the created neural network, L/ regularisation is
used on the second hidden layer, and L2 regulari-
sation is used on the third hidden layer. There is a
Dropout between all layers of the network, which
randomly switches off 30—60% of neurons during
the training. To minimise the loss function, the
most efficient optimiser was chosen based on the
adaptive estimation of the Adam moment (adaptive
moment estimation) [36]. The neural network
training was carried out for 100 epochs with a batch
size of 64.
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The performance of the developed in silico the
Ames/QSAR predictive models was evaluated using
the metrics of accuracy, recall, specificity and
Fi-score, which were calculated taking into ac-
count the confusion matrix in accordance with the
relations

TP+ TN
accuracy = ’
TP+TN + FP + FN
recall = L,
TP + FN
s TN
spectfeity = 7
F-score =2- precision - recall

. . b
precision + recall

where TP, TN, FP, FN correspond to the number
of true positive, true negative, false positive and
false negative classification results, respectively.
Similar approaches to the selection of
Ames/QSAR predictive models for solving the prob-
lem of assessing the genotoxicity of environmental
factors can be traced in scientific papers [22, 27, 37,
38]. At the stage of selection the best machine lear-
ning model, we also used a popular and quite effec-
tive metric based on calculating the area under the
receiver operating characteristic curve (ROC) [39].
The performance of the four predictive models was
evaluated according to the number of True Posi-
tives, True Negatives, False Positives and False Ne-
gatives results in the classification. It should be
noted that the accuracy metric is considered in
view of assessing two parameters: overall accuracy,
which corresponds to the part of xenobiotics that
were correctly distributed between the two classes,
and precision metric, which corresponds to the part
of chemical compounds that were correctly classi-
fied by the Ames/QSAR predictive models as
chemical compounds with pronounced genotoxic
properties. The recall metric allows us to determine
the proportion of chemical compounds that are mu-
tagens, taking into account the total number of true
positive and false negative results. The criterion for
evaluating the performance of Ames/QSAR speci-

Table 1: Classification results for the test sample

ficity models is similar to recall, but is calculated to
determine the part of xenobiotics that are negative
for genotoxic potential, taking into account the to-
tal number of true negative and false positive clas-
sification results. F-score, as a criterion for eva-
luating the performance of developed machine
learning models, is a harmonic average of two me-
trics — precision and recall.

Results

Table 1 presents the classification results ob-
tained on the test sample using LR-Scikit, LR-
SGD, random forest method, and neural network.

According to obtained classification reports,
taking into account accuracy, recall, specificity
metrics and F-score, among the four predictive
Ames/QSARs, the best, taking into account all
metrics, is the Random Forest method with
AUC =0.92. The neural network demonstrated less
performance with an accuracy of 0.83 and a sensi-
tivity of 0.87. The area under the ROC curve for
the neural network is 0.9, which indicates a fairly
good prediction result of the classification model.
Despite the fact that the values of the classification
reports for LR-Scikit and LR-SGD are almost the
same, the analysis of error matrices allowed us to
give preference to the latter method. On the test
sampling, the LR-SGD model, in comparison with
LR-Scikit, allowed us to identify a larger number
of true positive xenobiotics that show genotoxicity
properties.

The optimisation of machine learning models
by reducing the dimensionality of the input data
was implemented using the generated ranked list of
molecular descriptors, which was obtained accor-
ding to the coefficients of two regression models
(LR-SGD and LR-Scikit) and two Random Forest
methods: mean decrease impurity and permutation
feature importance. Table 2 presents a list of mole-
cular descriptors that were identified according to
the four approaches, occurred several times in the
models, and had a significant enough impact on
the predicted variable. These model parameters are
important in view of assessment of classification

Metrics LR-Scikit LR-SGD Random Forest Neural network
accuracy 0.79 0.79 0.86 0.83
recall 0.81 0.83 0.87 0.82
specificity 0.76 0.76 0.84 0.83
F,-score 0.80 0.80 0.86 0.83

Notes. LR-Scikit — logistic regression, LR-SGD — logistic regression using stochastic gradient descent.
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Table 2: List of molecular descriptors that have a significant impact on the predicted variable

Random Forest

Random Forest

) . ) . LR-Scikit LR-SGD
(mean decrease impurity ) (permutation feature importance)
1 MATS Ie SHBint2 AATS2s GATS1p
2 R_TpiPCTPC MATS Ie GATS1p nAtomP
3 nFRing BCUTp-1h R_TpiPCTPC SpMax1_Bhm
4 nAtomP ATSC2e BCUTp-1h R_TpiPCTPC
5 MLFER E SpMin4_Bhm nHBd AATSC2i
6 SpMinl Bhm SpMinl _Bhm AATSCOm nFRing
7 GATSl1p GATSIm AATSC2i MATS2c
8 GATSIm AATSCOm MATS2c AATS2s
9 ATSC2e - SpMax1 Bhm nHBd
10 - - SHBint2 BCUTp-1h
11 - - ATS7s ATS7s
12 - - MLFER E SHBint2
13 - - SpMin4_Bhm -

Notes. LR-Scikit — logistic regression, LR-SGD — logistic regression using stochastic gradient descent.

results. Given the large number of molecular de-
scriptors used as input data for the developed clas-
sifiers, it was decided to form a limited list of the
most important descriptors (Table 2), taking into
account the thirtieth molecular descriptor of the
ranked list. Molecular descriptors that were pre-
sented in one of the models only once were not
recorded in Table 2. Within this study, we paid at-
tention to the descriptors that may have a signifi-
cant impact on the manifestations of xenobiotic
genotoxicity. We also used the ranked list of de-
scriptors to solve the problem of optimising ma-
chine learning models, which consisted of deter-
mining a fixed base set of features that are selected
taking into account the list of descriptors recorded
in descending order of weighting. At the same
time, both recurring descriptors and those that
were represented in the models once were taken
into account.

Table 2 presents in bold the mnemonics of
molecular descriptors that are repeated in the
models 3-4 times. The molecular descriptors that
are repeated in only two models are in italics (see
Table 2). The order of recording the molecular de-
scriptors for each method corresponds to the values
of the weighting coefficients (modulo), which are
decreased with increasing row number in Table 2.

It is scientifically important to effectively so-
lution of the problem of classification for potential
genotoxic compounds using predictive models, ta-
king into account a limited number of molecular
descriptors. This approach is the basis for impro-
ving the models, allowing obtaining a better gene-
ralizability and resilience of the models to retrai-
ning [40]. To solve the problem of the Ames/QSAR
models optimisation, we proposed using as input
data for each of the four classifiers a set of 50, 100,

150, 200, 300, and 400 molecular descriptors se-
lected from each model. The features were selected
according to a ranked list of molecular descriptors
obtained by taking into account the coefficients of
two regression models (LR-SGD and LR-Scikit)
and two Random Forest methods: mean decrease
impurity and permutation feature importance. The
removal of duplicate descriptors affected the final
value of the number of descriptors that were fur-
ther used in the modelling. The number of features
used for testing the Ames/QSAR models without
duplicates was 128 (was 200), 276 (was 400), 371
(was 600), 454 (was 800), 589 (was 1,200) and 655
(was 1,600). At the same time, the duplicate mole-
cular descriptors were saved in a separate file for
further testing in silico models with a limited data
set, represented by features with the highest weigh-
ting coefficients and having a significant impact on
the predicted variable.

Table 3 presents information on the accuracy
assessment of the classification results for the four
machine learning models obtained on the test sam-
pling for a fixed number of molecular descriptors
without duplicates.

According to the results of the machine learn-
ing model testing, there is no significant correla-
tion between the accuracy of the models and the
qualitative and quantitative composition of mole-
cular descriptors. Reducing the number of molecu-
lar descriptors usually led to a decrease in the ac-
curacy of in silico models. It is quite interesting
from a scientific point of view that the use of a da-
ta set with 276 molecular descriptors without dup-
licates led to an improvement in the predictive
ability of logistic regressions and a neural network.
At the same time, the accuracy of the random fo-
rest model did not change (the Figure).
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Table 4 presents the classification results ob-
tained on the test sampling using LR-Scikit, LR-
SGD, random forest method, and neural network,
taking into account a limited data set of 276 mole-
cular descriptors.

According to the obtained classification re-
ports, we can note an increase in the accuracy of
logistic regressions, which increased to 80%, and
the neural network — to 84 %.

To solve the issue related to the selection of
this set of input data, in which the efficiency of the

developed predictive models will be the best, we
proposed to conduct additional testing of machine
learning models taking into account a set of mole-
cular duplicate descriptors that have a significant
impact on the predicted variable. To evaluate the
performance of the developed classifiers, 78 mole-
cular duplicate descriptors were used, which were
removed at the stage of formation of input data sets
different in quantity (see Table 3). The classification
result for the test sampling with a limited number
of duplicate descriptors is presented in Table 5.

Table 3: Dependence of the accuracy on Ames/QSAR models on the qualitative and quantitative composition of molecular descriptors

Number of descriptors Accuracy Accuracy Accuracy Accuracy
(without repetitions) of LR Scikit-learn of LR-SGD of RF of NN
128 78% 77% 84% 82%
276 80% 80% 86% 84%
371 78% 78% 84% 80%
454 78% 78% 83% 82%
589 79% 79% 84% 82%
655 80% 79% 83% 84%
1442 (initial value) 79% 79% 86% 83%

Notes. LR-Scikit — logistic regression, LR-SGD — logistic regression using stochastic gradient descent, RF — random forest, NN —

neural network.

Table 4: Classification results for the test sampling (276 molecular descriptors)

Metrics LR-Scikit LR-SGD Random Forest Neural network
accuracy 0.80 0.80 0.86 0.84
recall 0.80 0.81 0.84 0.85
specificity 0.79 0.80 0.88 0.83
F,-score 0.80 0.80 0.86 0.84

Notes. LR-Scikit — logistic regression, LR-SGD — logistic regression using stochastic gradient descent.

Table 5: Classification result for the test sampling with a limited number of duplicate molecular descriptors

Metrics LR-Scikit LR-SGD Random Forest Neural network
accuracy 0.74 0.74 0.77 0.78
recall 0.73 0.72 0.80 0.84
specificity 0.75 0.76 0.85 0.72
F,-score 0.74 0.74 0.82 0.80

Notes. LR-Scikit — logistic regression, LR-SGD — logistic regression using stochastic gradient descent.

88%
86%
84%

82%

80%

78%

76%

74% I

72% —

Accuracy of LR SGD

Accuracy of model

Accuracy of LR Scikit-learn Accuracyof RF Accuracy of NN

Number of descriptors

E128 m276 m371 w454 E589 mW655 m1442 (initial values)

Figure: Histogram of Ames/QSAR models accuracy dependence on the quantitative composition of molecular descriptors
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According to the obtained classification re-
ports, taking into account the accuracy, recall, spe-
cificity, and F;-score metrics, we can see a decrease
in the efficiency of the Ames/QSAR models devel-
oped compared to the classification results with the
full set of input data (for 1,442 molecular descrip-
tors). The result of testing machine learning mod-
els with a limited set of molecular descriptors has
some negative implications in view of assessment
of their performance. On the other hand, reducing
the number of molecular descriptors by 95 % of the
original number resulted in a decrease in accuracy
for the four predictive models of only from 3 to
6 %. This result can act as a stimulus for the search
for cause-and-effect relationships between mutage-
nicity and physicochemical, spatial, electronic cha-
racteristics of a particular xenobiotic, which are
given by a set of molecular descriptors-duplicates
that have a significant impact on the predicted va-
riable.

Discussion

The study of the impact of environmental fac-
tors on the human genetic apparatus is one of the
priority areas of modern genetic toxicology. The
classical scheme for detecting and assessing the ge-
notoxic potential of chemical compounds involves
the use of a standard battery of in vitro and in vivo
test systems, which has significant defects in view
of time spent, cost of experimental studies and ethi-
cal problems [23, 24, 29, 41]. Trends in the develop-
ment of modern computational toxicology, which
should comply with the basic principles of the "3R"
concept, require a reduction in the number of stu-
dies with warm-blooded animals. In conditions of
the increasing number of chemicals in the envi-
ronment that can show genotoxic properties, scien-
tists pay special attention to in silico models that
can act as alternative approaches for genetic assess-
ment of environmental factors. The use of in silico
QSAR models is a promising forward-looking ap-
proach to solving the classification problem for a
set of chemicals with uncertain genotoxic potential
and will optimise the complex process of effective
identification and accounting of chemical com-
pounds that may impact on the human genetic ap-
paratus. The trend towards the active use of ma-
chine learning algorithms and the introduction of
effective in silico methods for genotoxicity assess-
ment can be traced in scientific papers [22, 27, 37,
38,42—44]. This intensification of the scientific
community is explained by the rather large unrea-
lised potential of machine learning models and the
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active implementation of new approaches that can
be crucial in terms of improving the efficiency of
the developed models.

Despite the advantages and prospects of using
in silico machine learning models in toxicology,
they have certain defects. The main obstacle to
creating effective predictive Ames/QSAR models is
the availability of a sufficiently large number of
chemical compounds that are protected by security
documents and cannot usually be used in model-
ling. In addition, the predictive ability of the de-
veloped models directly depends on the quality of
the experimental data obtained on S. typhimurium
strains (TA1535, TA1537, TA98, TA100, TA102).

The accuracy of modern Ames/QSAR descri-
bed in the scientific literature is currently in the
range of 80—85%, which corresponds to the rep-
roducibility of the Ames test in different laborato-
ries [45, 46]. At the same time, the accuracy of the
four Ames/QSAR models developed by us, taking
into account a limited set of 276 molecular de-
scriptors, ranged from 80 to 86 %.

The assessment of the genotoxic potential of
xenobiotics that may be presented in the environ-
ment is usually based on a sufficiently large num-
ber of molecular descriptors [37, 47]. The optimi-
sation of the machine learning models developed
in this paper was realised by reducing the amount
of input data used for modelling. To solve this
problem, we used the coefficients of two regression
models (LR-SGD and LR-Scikit) and two Ran-
dom Forest methods: mean decrease impurity and
permutation feature importance, which allowed us
to select the most influential features with the sub-
sequent formation of a ranked list of molecular de-
scriptors that should be taken into account when
conducting in silico modelling. This approach has
scientific value and may allow further researchstu-
dy to resolve the issue of finding cause and effect
relationships between genotoxicity and features de-
fined by a set of molecular descriptors. In addition,
the formation of a list of basic sets of molecular
essential descriptors (see Table 2) may allow us
to obtain a higher quality Ames/QSAR predictive
model. The relevant methodology of using a limi-
ted set of molecular descriptors can also be applied
to different classes of genotoxic compounds, which
may further simplify the classification task solving
chemical compounds with similar physical and
chemical properties. A detailed analysis of molecu-
lar descriptors (see Table 2) in relation to the phy-
sicochemical, spatial, electronic features of a par-
ticular xenobiotic is quite interesting from a scien-
tific point of view. First of all, we focused on a set



Innov Biosyst Bioeng, 2025, vol. 9, no. 2

of molecular descriptors that are repeated 3-4 times
(see Table 2). A rather interesting result was ob-
tained after analysing scientific sources on the use
of duplicate molecular descriptors in similar studies
with the implementation of predictive QSAR mod-
els. The molecular descriptor GATS1p, which en-
codes information on molecular polarizability, was
used as the main one in predicting chemical toxici-
ty for 1,163 agents. At the same time, the toxicity
of xenobiotics was assessed using QSAR models on
the test microorganism Tetrahymena pyriformis.
Quite interesting is the fact that out of 753 mole-
cular descriptors, only 4 were selected in the mod-
elling, including GATS1p [48]. The R_TpiPCTPC
descriptor was also selected as the main descriptor
in the Ames/QSAR model used to assess mutage-
nicity, carcinogenicity and genotoxicity in mam-
mals [49]. SHBint2 is the main descriptor that was
selected in the implementation of two machine
learning models for determining the Ames mutage-
nicity. At the same time, three predictive models
were implemented in the study [50]. The molecular
descriptor BCUTp-1h, which is one of the criteria
for assessing a xenobiotic molecule as to the level
of intermolecular interactions, belongs to the main
descriptor of one of the QSAR models proposed by
the authors [51], which was developed to assess the
toxicity of pesticides dissolved in water. The ob-
tained results add confidence that the formation of
a list of important features, given by a set of mole-
cular descriptors, can be carried out in accordance
with the methodology presented in this paper.

Conclusions

Among the four implemented Ames/QSAR
predictive models (taking into account the full set
of 1,442 molecular descriptors and 8,083 chemical
compounds), the best one is the Random Forest
method with an AUC = 0.92 and an accuracy rate
of 86%. The neural network demonstrated lower
efficiency with 83% accuracy and 82% sensitivity.
Comparison of classification reports for the two re-
gressions allows us to give preference to the LR-
SGD, which allows us to effectively identify a lar-
ger number of true positive chemical compounds
in view of mutagenicity. The developed Ames/QSAR
predictive models are balanced in terms of identi-
fying both positive (mutagenic) and negative (non-
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mutagenic) cases, as defined by the recall and
specificity metrics.

The optimisation of Ames/QSAR models,
which was implemented by reducing the amount of
input data, was realised by using a list of molecular
descriptors ranked according to the weighting coef-
ficients. This procedure, on the one hand, allowed
us to develop a methodology for formation a list of
the main descriptors that have a significant impact
on the predicted variable and should be taken into
account in modelling. On the other hand, the ge-
nerated list of descriptors was used to identify a li-
mited set of descriptors that would increase the
predictive ability of the developed models. The
conducted study showed that the use of a limited
set of 276 molecular descriptors led to increase in
accuracy for logistic regressions, which increased to
80%, and for the neural network — to 84%. At the
same time, the accuracy of the Random Forest
model remained unchanged and was 86%. This re-
sult indicates that when developing Ames/QSAR
models, it is necessary to take into account not
only the basic, molecular descriptors that can be
obtained with the maximum values of the weigh-
ting coefficients, according to the methodology
developed by us, but also a set of features that
may have a minor impact on the predicted vari-
able. In this situation, increasing the accuracy of
the Ames/QSAR models used to assess the geno-
toxic effects of environmental factors can be
achieved by combining of less influential descrip-
tors with other. The solution to the problem asso-
ciated with finding the best set of features for
which the Ames/QSAR models developed by the
authors will be most effective may be in search for
cause and effect relationships between mutagenicity
and physicochemical, spatial, electronic characte-
ristics of a particular xenobiotic, which are defined
by a set of molecular descriptors.

Modern trends in the development of artificial
intelligence and approaches that are the basis for
deep learning give hope for solving all the pressing
issues in the context of creating effective in silico
models for predicting Ames mutagenicity.
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Kl im. Iropsi Cikopcikoro, Kuis, Ykpaita
*dakynbTeT MEAULIMHM | OXOPOHM 370pOR's YHiBepcuTeTy [kopaxa Bawmkrtona, BawmHrrorH, CLUA

IN SILICO MOLENI NPOrHO3YBAHHSA MYTATEHHOCTI EAMCA ®AKTOPIB HABKOMNULIHLOIO CEPEAOBULLA

Mpo6nemartuka. Po3pobrieHi Ta LUMPOKO BUKOPUCTOBYBaHI B MUHYII AECATUPIYYS KINAcUyHi in vitro Ta in vivo METOAM OLiHKN FreHEeTUYHUX
edrekTiB haKkTOpiB HABKOMMULLHLOIO CepeAoByLLa € CKNagHNMM 3 TOYKM 30py iX NMPOBEAEHHs, € AOPOroBapTiCHUMK, TpUBaNMmMmn B Yaci,
MatoTb NpobnemMy BiATBOPHOBAHOCTI pe3ynbTaTiB eKCNepMMEHTY B Pi3HUX NabopaTopisx i MOXyTb CTUKATUCS 3 eTUYHMMKU Npobnemamm
BUKOPUCTaHHS B €KCNepUMeEHTax TEeMMOoKPOBHUX TBapUH.

Meta. Po3po6ka, ontumisauisi 1 anpobauis edekTvBHux in silico mogenew ouiHku MyTareHHoCTi Evimca BnnmBy ¢pakTopiB HaBKOMMLLI-
HbOro cepefoBMLLA

MeToauka peanisauii. FeHeTUYHa OLjiHKa BNNMBY (haKTOPIB HABKOMMULLHLOIO cepefoBullia byna npoBedeHa BiAnoBiAHO A0 Habopy Xi-
MiYHUX CMONYK, ANS SAKUX eKCnepuMeHTanbHO, 3a JONOMOroto in vitro Tecty Eiimca Salmonella/microsome, 6yna otpumana iHdopmauis
Npo NOTeHLiHY MyTareHHy akTUBHICTb. [Ins po3B’A3aHHs 3agavi 6iHapHOi knacudikaLii 3 MeToto hopMyBaHHSA [BOX KnaciB KceHobioTu-
KiB (MyTareH/He myTareH) 6yno po3pobreHo 4oTupu Mogeni MalMHHOMO HaB4YaHHs. 3aranbHy BUBIpKyY, WO npeacTaBneHa Habopom i3
8083 kceHobioTUkiB, Oyrno po3aineHo Ha TpeHyBarnbHy Ta BanigauiiHy y cniBBigHOLWEHHI 75 oo 25% BignosigHo.

Pe3ynbTaTtn. ToyHicTb po3pobneHnx mMmogenen MalvHHOrO HaBvaHHsS Byna B mexax 85%, Lo BiANOBiga€e BiATBOPOBAHOCTI eKcrnepu-
MEHTanNbHUX AaHUX, OTPUMAaHMX Y KiNbKiCHOMY, HamniBKinbKiCHOMY Ta sikicHomy Tectax Eiimca B pisHux nabopatopisix. 3anponoHoBaHo
GiHapHuI knacudikaTop, WO 3a YMOB 3MEHLUEHHSA PO3MIPHOCTI BXiAHMX AAHUX Aa€ 3MOry MiABULLMTY TOYHICTb pesynbTaTiB in silico npo-
rHO3yBaHHsA MyTareHHocTi Erimca.

BucHoBku. O6r'pyHTOBaHO HEOOXiAHICTE OHOBMNEHHS Ta PO3LUMPEHHST Nepeniky eekTUBHKX i GinbL NPOoaYKTUBHUX MeToAiB i niaxoais
ANS OUIHKM FeHOTOKCUYHMX edekTiB hakTopiB HABKOMMLLHBOIO CepefoBuLla, WO Aa€ 3MOry YHUKHYTM 3aCTOCYBaHHS B €KCMEPUMEHTI
TEMMOKPOBHMNX TBApPWH, 3a0LLAAUTM Yac Ta 3MEHLUMTU KiNbKiCTb XMOHOHEraTMBHMX i XMOHONO3UTUBHMX pe3ynbTaTiB. [lokasaHo MoXru-
BiCTb 36iMbLUEHHA TOYHOCTI NPOrHOCTUYHNX MOAENEN MALUMHHOIO HaBYaHHSA ANsi OUIHKM reHOTOKCUYHOro noTeHuiany BnnvBy dakTopis
HaBKOMULLHLOIO CepeAoByLLA 32 YMOB 3MEHLUEHHS PO3MIpHOCTI Habopy AaHUX.

Knto4yoBi cnoBa: MyTauisi; reHOTOKCUYHICTb; QSAR-MoAenb; MONeKynspHi 4eCKpUNTOpY; MoAeni MalMHHOIO HaBYaHHS.



