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Background. The classical in vitro and in vivo methods developed and widely used in the past decades to as-
sess the genetic effects of environmental factors are complex in view of their implementation, are expensive, 
long-lasting, have the problem of reproducibility of the results of experiment in different laboratories and 
may face ethical problems of using warm-blooded animals in experiments.  
Objective. Development, optimisation and testing of effective in silico models for assessment of Ames muta-
genicity of environmental factors. 
Methods. The genetic assessment of the impact of environmental factors was carried out in accordance with 
a set of chemical compounds for which information on potential mutagenic activity was obtained experimen-
tally, using the in vitro Ames Salmonella/microsome test. Four machine learning models were developed to 
solve the problem of binary classification to form two classes of xenobiotics (mutagen/non-mutagen). The 
total sample is represented by a set of 8,083 xenobiotics.  
Results. We developed four machine learning models with 85% accuracy, matching the reproducibility of 
Ames test data across laboratories. In addition, we have proposed a binary classifier that subject to dimen-
sionality reduction of the input data, taking into account the qualitative composition of molecular descrip-
tors, allows us to improve the accuracy of in silico prediction of genotoxicity of chemicals.  
Conclusions. The necessity of updating and expanding the list of effective and more productive methods and 
approaches for assessing the genotoxic effects of environmental factors is substantiated, which allows avoi-
ding the use of warm-blooded animals in the experiment, saving time and reducing the number of false-
negative and false-positive results. The possibility of increase the accuracy of predictive machine learning 
models for assessing the genotoxic potential of environmental factors in conditions of dimensionality reduc-
tion of the data set is presented.  
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Introduction 

Over the past few decades, due to scientific 

and technological progress, there has been an ex-

ponential increase in the number of chemical com-

pounds released into the environment that can af-

fect the human genetic apparatus. In August 2024, 

the number of registered xenobiotics, information 

on which is stored on the servers of the American 

Chemical Society, was more than 280 million sub-

stances. As of the beginning of 2020, information 

was available on more than 100,000 chemicals pro-

duced by industry that can adversely affect the en-

vironment and human health, and, in particular, 

genetic health [1].  

One of the main features of chemical hazards 

is their ability to interact with hereditary material, 

which can initiate the development of various ge-

netic and oncological diseases [2–5]. Despite the 

fact that the issue of genetic and carcinogenic safe-

ty is receiving a lot of attention, the public and the 

scientific community concern about the fact that 

information on the specific biological effects of a 

large number of compounds is, on the one hand, 

insufficiently studied, and on the other hand, the 

results of studies on such xenobiotics have been 

either contradictory or obtained with significant 

limitations on the final genetic effects. Another 

significant drawback is the fact that a large number 

of chemicals (especially medicines, various food 

additives, cosmetics, household chemicals) are reg-

istered without conducting researches on genetic 

assessment of impact on the environment and the 

human genetic apparatus [6–8]. Significant limita-

tions in the assessment of genetic effects of poten-

tial genotoxic compounds are associated with the 

necessity to take into account the main provisions 

of the "3R" concept in vivo tests, which is guided 

by the principles aimed at reducing, improving and 

replacing animal models [9, 10]. The standardised 

in vitro [11–14] and in vivo [15–20] genotoxicity 

assessment methods approved by the Organisation 
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for Economic Co-operation and Development and 

accepted by the scientific community in conditions 

of the extremely rapid expansion of the chemical 

space do not allow us to obtain information on the 

mutagenic potential of a large number of substan-
ces – potential mutagens – released into the envi-

ronment [21, 22]. In addition, the drawbacks of 

the standard battery testing systems [23, 24] for de-

termining genotoxicity also include the complexity 

of testing, the rather high cost of research, and the 

ethical problems of using warm-blooded animals, 

which contradict the provisions of the "3R" con-

cept. The problem of reproducibility of the expe-

riment is related to the diversity of batches of cul-

ture media, as well as the subjective factor, which 

is a major obstacle to obtaine objective results in 

assessing the genotoxic potential of environmental 

factors.  

Among the various in vitro and in vivo experi-

mental methods for genetic assessment of the im-

pact of environmental factors, in vitro the Ames 

test deserves special attention. The Ames test is 

used by almost all laboratories around the world to 

detect and assess the genetic activity of environ-

mental factors. In addition, for more than 50 years 

of using this method, a sufficiently large amount of 

experimental material has been obtained as to the 

number of chemical compounds tested, which can 

be used to develop more efficient and modern 

in silico models for assessing the Ames mutagenicity 

of environmental factors. In accordance with the 

recommendations of the Organisation for Econo-

mic Co-operation and Development, five strains of 

Salmonella typhimurium are used to assess muta-

genic potential (ТА1535, ТА1537, ТА98, ТА100, 

ТА102) [11]. The increased interest of the scien-

tific community in this method of genotoxicity 

testing is also due to the "Guidelines on Genotox-

icity Testing and Data Interpretation for Pharma-

ceuticals for Human Use" ICH S2(R1) adopted in 

2012 by the International Council on Harmonisa-

tion of Technical Requirements for Registration of 

Pharmaceuticals for Human Use, which presented 

two theoretically justified schemes for the use of 

in vitro and in vivo batteries of standard testing sys-

tems for genotoxicity determination, each of which 

included the Ames test [25].  

The development of information technologies 

and artificial intelligence systems, as well as ad-

vances in computer science, computational mole-

cular biology and chemoinformatics, have become 

a reliable foundation for further activation of the 

scientific community to resolve the urgent issues of 

modern computational toxicology. The result of 

these processes became a significant paradigm shift 

in genotoxicity testing, which is associated with the 

development, testing and implementation of mod-

ern in silico QSAR models for assessing the geno-

toxic effects of environmental factors. The abbrevi-

ation QSAR (Quantitative Structure-Activity Rela-

tionship) is used in the scientific literature to de-

note models of quantitative structure-activity rela-

tionship. Within the task solution to obtain a ge-

netic assessment of the impact of environmental 

factors, the abbreviation QSAR combines methods 

that allow us to predict the activity (mutagenicity) 

of a xenobiotic according to its structure, which is 

given by a set of molecular descriptors. The in-

creased interest of scientists in the development of 

effective in silico models can be traced in scientific 

papers [26–30]. Despite the sufficient attention of 

researchers to the creation of QSAR models for de-

termining genotoxic potential, the number of scien-

tific papers in this area of research has not de-

creased over the past 5 years, but has even incre-

ased. This trend is determined by the high predic-

tive potential of in silico models. The Ames/QSAR 

predictive models that use the in vitro Ames test re-

sults for various xenobiotics as input data deserve 

special attention. An interesting fact is that for the 

Ames/QSAR models described in the scientific li-

terature, the problem of improving the quality of 

classification for chemical compounds that may 

exhibit potential genotoxic properties needs to be 

resolved. In this situation, the prospects for im-

proving the predictive capability of in silico models 

can be realised by covering a larger number of 

chemical compounds, using various balanced sets 

of molecular descriptors, 2-D digital structure im-

press, applying long-term predictive QSAR models 

and implementing approaches to optimise them.  

Taking into account the sufficiently large po-

tential of machine learning models and the pecu-

liarities of the input data used to obtain a genetic 

assessment of the impact of environmental factors, 

the most quality models in view of predicting of 

mutagenicity, the Ames/QSAR models can be ob-

tained by reducing the set of molecular descriptors 

and selecting those predictors that have a signifi-

cant impact on the predicted variable. 

Materials and Methods 

In creating of in silico machine learning mod-

els, we used a dataset [31] obtained by combining 

three publicly available datasets: Kazius-Bursi [32], 

Hansen [33] and EFSA [34]. According to the da-

taset containing 8,083 xenobiotics, any chemical 
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compound was considered mutagenic if at least one 

positive result was obtained in the in vitro the Ames 

test on S. typhimurium strains TA97, TA98, TA100, 

TA102, TA1535, TA1537 and TA1538. For the 

Ames/QSAR predictive models, a set of 1,442 de-

scriptors for each potential environmental pollutant 

was used, obtained in accordance with the linear 

SMILES notation, using the PaDEL software [31].  

Data pre-processing for Ames/QSAR machine 

learning models involves a standard procedure of 

their normalisation taking into account the stan-

dard range of values from [0.1] and z-normalisa-

tion, which allows us to remove anomalous values. 

At the stage of data preparation, the column "Ca-

nonical SMILES", which contains textual informa-

tion about the structure of the molecule that is not 

used for modelling, was removed. Columns with 

identical values were also removed as this informa-

tion would not be informative for machine learning 

models. In order to avoid multicollinearity and re-

duce the data dimensionality, correlated features 

were also removed when two or more features have 

a high correlation (more than 0.95) according to 

the Pearson correlation coefficient. In in silico ma-

chine learning models, the used data was divided 

into training and test sets in the ratio of 75/25, re-

spectively.  

Four machine learning models have been pro-

posed to solve the binary classification problem: 

logistic regression (LR-Scikit), logistic regression 

using stochastic gradient descent (LR-SGD), ran-

dom forest method, and neural network.  

For the logistic regression (Scikit-learn library), 

most of the model setup parameters were used by 

default. The problem of unbalanced representation 

of two classes of xenobiotics (mutagen/non-muta-

gen), which may affect the quality of classification 

of the less represented class, was solved by setting 

class_weight="balanced". At the same time, weigh-

ting factors were calculated for each class to ensure 

an equal impact at the model training stage.  

Logistic regression (LR-SGD) uses the sto-

chastic gradient descent (SGD) method to opti-

mise the parameters of the Ames/QSAR model. 

The ease of SGD implementation is the basis for 

expanding the horizons of its application in ma-

chine and deep learning models [35]. The maxi-

mum performance of SGD is achieved by updating 

the model parameters on each individual data 

sample or a small group of samples (batches). In 

our proposed Ames/QSAR LR-SGD machine lear-

ning model, 64 samples from the training dataset 

were used to update the model parameters. The lo-

gistic regression model was implemented through 

an architecture based on the Sequential class of the 

TensorFlow library, which allows us to create mod-

els consisting of a sequence of layers. To solve the 

binary classification problem, we chose a simple 

architecture that included only one (Dense) layer 

with one output. After passing through the Dense 
layer, the weights and offsets are calculated based 

on the input data. The model receives input data 

in the form of a matrix, where each row represents 

an observation and each column represents a fea-

ture. The sigmoid was chosen as the activation 

function, which converts a linear combination of 

features into a probability that a certain chemical 
compound belongs to one of two classes – muta-

gen or non-mutagen. The process of effective trai-

ning model involves optimization the loss function, 

which minimises the difference between the pre-

dicted probability value and the actual result of the 

mutagenic potential assessment of a particular 

xenobioticа. To solve the problem of binary classi-

fication in the context of genotoxic potential as-

sessment, it was proposed to use the loss function 

binary_crossentropy.  
The RandomForestClassifier class of the Scikit-

learn Pyton library was used to implement the 

Ames/QSAR random forest model. The random 

forest model was represented by 200 trees, 

(n_estimators=200), with a maximum number of 

leaves equal to 600 (max_leaf_nodes=600).  

The structure of the neural network consists 

of an input layer, an output layer, and 4 hidden 

layers containing 128, 256, 128, and 64 neurons, 

respectively. The ReLU function was selected as 

the activation function for the hidden layers, which 

has the advantages of relative simplicity of imple-

mentation and allows us to effectively solve the 

problem of the vanishing gradient. At the output 

layer, the activation function is Sigmoid, which 

makes it possible to obtain the probability of xeno-

biotics belonging to one of two classes (muta-

gen/non-mutagen). To solve the standard neural 

network problem connected with the L1 and L2 

methods and Dropout regularisation were used. In 

the created neural network, L1 regularisation is 

used on the second hidden layer, and L2 regulari-

sation is used on the third hidden layer. There is a 

Dropout between all layers of the network, which 

randomly switches off 30–60% of neurons during 

the training. To minimise the loss function, the 

most efficient optimiser was chosen based on the 

adaptive estimation of the Adam moment (adaptive 

moment estimation) [36]. The neural network 

training was carried out for 100 epochs with a batch 

size of 64. 
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Table 1: Classification results for the test sample  

Metrics LR-Scikit LR-SGD Random Forest Neural network 

accuracy 0.79 0.79 0.86 0.83 
recall 0.81 0.83 0.87 0.82 
specificity 0.76 0.76 0.84 0.83 
F1-score 0.80 0.80 0.86 0.83 

Notes. LR-Scikit – logistic regression, LR-SGD – logistic regression using stochastic gradient descent. 

The performance of the developed in silico the 

Ames/QSAR predictive models was evaluated using 

the metrics of accuracy, recall, specificity and 

F1-score, which were calculated taking into ac-

count the confusion matrix in accordance with the 

relations 

TP TN
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TP TN FP FN
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where TP, TN, FP, FN correspond to the number 

of true positive, true negative, false positive and 

false negative classification results, respectively. 

Similar approaches to the selection of 

Ames/QSAR predictive models for solving the prob-

lem of assessing the genotoxicity of environmental 

factors can be traced in scientific papers [22, 27, 37, 

38]. At the stage of selection the best machine lear-

ning model, we also used a popular and quite effec-

tive metric based on calculating the area under the 

receiver operating characteristic curve (ROC) [39]. 

The performance of the four predictive models was 

evaluated according to the number of True Posi-
tives, True Negatives, False Positives and False Ne-
gatives results in the classification. It should be 

noted that the accuracy metric is considered in 

view of assessing two parameters: overall accuracy, 
which corresponds to the part of xenobiotics that 

were correctly distributed between the two classes, 

and precision metric, which corresponds to the part 

of chemical compounds that were correctly classi-

fied by the Ames/QSAR predictive models as 

chemical compounds with pronounced genotoxic 

properties. The recall metric allows us to determine 

the proportion of chemical compounds that are mu-

tagens, taking into account the total number of true 

positive and false negative results. The criterion for 

evaluating the performance of Ames/QSAR speci-

ficity models is similar to recall, but is calculated to 

determine the part of xenobiotics that are negative 

for genotoxic potential, taking into account the to-

tal number of true negative and false positive clas-

sification results. F1-score, as a criterion for eva-

luating the performance of developed machine 

learning models, is a harmonic average of two me-
trics – precision and recall.  

Results 

Table 1 presents the classification results ob-

tained on the test sample using LR-Scikit, LR-

SGD, random forest method, and neural network.  

According to obtained classification reports, 

taking into account accuracy, recall, specificity 
metrics and F1-score, among the four predictive 

Ames/QSARs, the best, taking into account all 

metrics, is the Random Forest method with 

AUC  0.92. The neural network demonstrated less 

performance with an accuracy of 0.83 and a sensi-

tivity of 0.87. The area under the ROC curve for 

the neural network is 0.9, which indicates a fairly 

good prediction result of the classification model. 

Despite the fact that the values of the classification 

reports for LR-Scikit and LR-SGD are almost the 

same, the analysis of error matrices allowed us to 

give preference to the latter method. On the test 

sampling, the LR-SGD model, in comparison with 

LR-Scikit, allowed us to identify a larger number 

of true positive xenobiotics that show genotoxicity 

properties.  

The optimisation of machine learning models 

by reducing the dimensionality of the input data 

was implemented using the generated ranked list of 

molecular descriptors, which was obtained accor-

ding to the coefficients of two regression models 

(LR-SGD and LR-Scikit) and two Random Forest 

methods: mean decrease impurity and permutation 

feature importance. Table 2 presents a list of mole-

cular descriptors that were identified according to 

the four approaches, occurred several times in the 

models, and had a significant enough impact on 

the predicted variable. These model parameters are 

important in view of assessment of classification 
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Table 2: List of molecular descriptors that have a significant impact on the predicted variable 

Random Forest 
(mean decrease impurity ) 

Random Forest 
(permutation feature importance) 

LR-Scikit LR-SGD 

1 MATS1e SHBint2 AATS2s GATS1p 

2 R_TpiPCTPC MATS1e GATS1p nAtomP 

3 nFRing BCUTp-1h R_TpiPCTPC SpMax1_Bhm 

4 nAtomP ATSC2e BCUTp-1h R_TpiPCTPC 

5 MLFER_E SpMin4_Bhm nHBd AATSC2i 

6 SpMin1_Bhm SpMin1_Bhm AATSC0m nFRing 

7 GATS1p GATS1m AATSC2i MATS2c 

8 GATS1m AATSC0m MATS2c AATS2s 

9 ATSC2e – SpMax1_Bhm nHBd 

10 – – SHBint2 BCUTp-1h 

11 – – ATS7s ATS7s 

12 – – MLFER_E SHBint2 

13 – – SpMin4_Bhm – 

Notes. LR-Scikit – logistic regression, LR-SGD – logistic regression using stochastic gradient descent. 

 

results. Given the large number of molecular de-

scriptors used as input data for the developed clas-

sifiers, it was decided to form a limited list of the 

most important descriptors (Table 2), taking into 

account the thirtieth molecular descriptor of the 

ranked list. Molecular descriptors that were pre-

sented in one of the models only once were not 

recorded in Table 2. Within this study, we paid at-

tention to the descriptors that may have a signifi-

cant impact on the manifestations of xenobiotic 

genotoxicity. We also used the ranked list of de-

scriptors to solve the problem of optimising ma-

chine learning models, which consisted of deter-

mining a fixed base set of features that are selected 

taking into account the list of descriptors recorded 

in descending order of weighting. At the same 

time, both recurring descriptors and those that 

were represented in the models once were taken 

into account. 

Table 2 presents in bold the mnemonics of 

molecular descriptors that are repeated in the 

models 3-4 times. The molecular descriptors that 

are repeated in only two models are in italics (see 

Table 2). The order of recording the molecular de-

scriptors for each method corresponds to the values 

of the weighting coefficients (modulo), which are 

decreased with increasing row number in Table 2. 

It is scientifically important to effectively so-

lution of the problem of classification for potential 

genotoxic compounds using predictive models, ta-

king into account a limited number of molecular 

descriptors. This approach is the basis for impro-

ving the models, allowing obtaining a better gene-

ralizability and resilience of the models to retrai-

ning [40]. To solve the problem of the Ames/QSAR 

models optimisation, we proposed using as input 

data for each of the four classifiers a set of 50, 100, 

150, 200, 300, and 400 molecular descriptors se-

lected from each model. The features were selected 

according to a ranked list of molecular descriptors 

obtained by taking into account the coefficients of 

two regression models (LR-SGD and LR-Scikit) 

and two Random Forest methods: mean decrease 

impurity and permutation feature importance. The 

removal of duplicate descriptors affected the final 

value of the number of descriptors that were fur-

ther used in the modelling. The number of features 

used for testing the Ames/QSAR models without 

duplicates was 128 (was 200), 276 (was 400), 371 

(was 600), 454 (was 800), 589 (was 1,200) and 655 

(was 1,600). At the same time, the duplicate mole-

cular descriptors were saved in a separate file for 

further testing in silico models with a limited data 

set, represented by features with the highest weigh-

ting coefficients and having a significant impact on 

the predicted variable.  

Table 3 presents information on the accuracy 

assessment of the classification results for the four 

machine learning models obtained on the test sam-

pling for a fixed number of molecular descriptors 

without duplicates. 

According to the results of the machine learn-

ing model testing, there is no significant correla-

tion between the accuracy of the models and the 

qualitative and quantitative composition of mole-

cular descriptors. Reducing the number of molecu-

lar descriptors usually led to a decrease in the ac-

curacy of in silico models. It is quite interesting 

from a scientific point of view that the use of a da-

ta set with 276 molecular descriptors without dup-

licates led to an improvement in the predictive 

ability of logistic regressions and a neural network. 

At the same time, the accuracy of the random fo-

rest model did not change (the Figure). 
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Table 3: Dependence of the accuracy on Ames/QSAR models on the qualitative and quantitative composition of molecular descriptors 

Number of descriptors 
(without repetitions) 

Accuracy 
of LR Scikit-learn 

Accuracy 
of LR-SGD 

Accuracy 
of RF 

Accuracy 
of NN 

128 78% 77% 84% 82% 
276 80% 80% 86% 84% 
371 78% 78% 84% 80% 
454 78% 78% 83% 82% 
589 79% 79% 84% 82% 
655 80% 79% 83% 84% 

1442 (initial value) 79% 79% 86% 83% 

Notes. LR-Scikit – logistic regression, LR-SGD – logistic regression using stochastic gradient descent, RF – random forest, NN – 

neural network. 

Table 4: Classification results for the test sampling (276 molecular descriptors) 

Metrics LR-Scikit  LR-SGD Random Forest Neural network  

accuracy 0.80 0.80 0.86 0.84 
recall 0.80 0.81 0.84 0.85 
specificity 0.79 0.80 0.88 0.83 
F1-score 0.80 0.80 0.86 0.84 

Notes. LR-Scikit – logistic regression, LR-SGD – logistic regression using stochastic gradient descent. 

Table 5: Classification result for the test sampling with a limited number of duplicate molecular descriptors 

Metrics LR-Scikit  LR-SGD Random Forest Neural network  

accuracy 0.74 0.74 0.77 0.78 
recall 0.73 0.72 0.80 0.84 
specificity 0.75 0.76 0.85 0.72 
F1-score 0.74 0.74 0.82 0.80 

Notes. LR-Scikit – logistic regression, LR-SGD – logistic regression using stochastic gradient descent. 

 

Figure: Histogram of Ames/QSAR models accuracy dependence on the quantitative composition of molecular descriptors 

Table 4 presents the classification results ob-

tained on the test sampling using LR-Scikit, LR-

SGD, random forest method, and neural network, 

taking into account a limited data set of 276 mole-

cular descriptors.  

According to the obtained classification re-

ports, we can note an increase in the accuracy of 

logistic regressions, which increased to 80%, and 
the neural network – to 84 %. 

To solve the issue related to the selection of 

this set of input data, in which the efficiency of the 

developed predictive models will be the best, we 

proposed to conduct additional testing of machine 

learning models taking into account a set of mole-

cular duplicate descriptors that have a significant 

impact on the predicted variable. To evaluate the 

performance of the developed classifiers, 78 mole-

cular duplicate descriptors were used, which were 

removed at the stage of formation of input data sets 

different in quantity (see Table 3). The classification 

result for the test sampling with a limited number 

of duplicate descriptors is presented in Table 5. 
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According to the obtained classification re-

ports, taking into account the accuracy, recall, spe-
cificity, and F1-score metrics, we can see a decrease 

in the efficiency of the Ames/QSAR models devel-

oped compared to the classification results with the 

full set of input data (for 1,442 molecular descrip-

tors). The result of testing machine learning mod-

els with a limited set of molecular descriptors has 

some negative implications in view of assessment 

of their performance. On the other hand, reducing 

the number of molecular descriptors by 95 % of the 

original number resulted in a decrease in accuracy 

for the four predictive models of only from 3 to 

6 %. This result can act as a stimulus for the search 

for cause-and-effect relationships between mutage-

nicity and physicochemical, spatial, electronic cha-

racteristics of a particular xenobiotic, which are 

given by a set of molecular descriptors-duplicates 

that have a significant impact on the predicted va-

riable. 

Discussion 

The study of the impact of environmental fac-

tors on the human genetic apparatus is one of the 

priority areas of modern genetic toxicology. The 

classical scheme for detecting and assessing the ge-

notoxic potential of chemical compounds involves 

the use of a standard battery of in vitro and in vivo 
test systems, which has significant defects in view 

of time spent, cost of experimental studies and ethi-

cal problems [23, 24, 29, 41]. Trends in the develop-

ment of modern computational toxicology, which 

should comply with the basic principles of the "3R" 

concept, require a reduction in the number of stu-

dies with warm-blooded animals. In conditions of 

the increasing number of chemicals in the envi-

ronment that can show genotoxic properties, scien-

tists pay special attention to in silico models that 

can act as alternative approaches for genetic assess-

ment of environmental factors. The use of in silico 
QSAR models is a promising forward-looking ap-

proach to solving the classification problem for a 

set of chemicals with uncertain genotoxic potential 

and will optimise the complex process of effective 

identification and accounting of chemical com-

pounds that may impact on the human genetic ap-

paratus. The trend towards the active use of ma-

chine learning algorithms and the introduction of 

effective in silico methods for genotoxicity assess-

ment can be traced in scientific papers [22, 27, 37, 

38, 42–44]. This intensification of the scientific 

community is explained by the rather large unrea-

lised potential of machine learning models and the 

active implementation of new approaches that can 

be crucial in terms of improving the efficiency of 

the developed models.  

Despite the advantages and prospects of using 

in silico machine learning models in toxicology, 

they have certain defects. The main obstacle to 

creating effective predictive Ames/QSAR models is 

the availability of a sufficiently large number of 

chemical compounds that are protected by security 

documents and cannot usually be used in model-

ling. In addition, the predictive ability of the de-

veloped models directly depends on the quality of 

the experimental data obtained on S. typhimurium 
strains (TA1535, TA1537, TA98, TA100, TA102). 

The accuracy of modern Ames/QSAR descri-

bed in the scientific literature is currently in the 

range of 80–85%, which corresponds to the rep-

roducibility of the Ames test in different laborato-

ries [45, 46]. At the same time, the accuracy of the 

four Ames/QSAR models developed by us, taking 

into account a limited set of 276 molecular de-

scriptors, ranged from 80 to 86 %.  

The assessment of the genotoxic potential of 

xenobiotics that may be presented in the environ-

ment is usually based on a sufficiently large num-

ber of molecular descriptors [37, 47]. The optimi-

sation of the machine learning models developed 

in this paper was realised by reducing the amount 

of input data used for modelling. To solve this 

problem, we used the coefficients of two regression 

models (LR-SGD and LR-Scikit) and two Ran-

dom Forest methods: mean decrease impurity and 

permutation feature importance, which allowed us 

to select the most influential features with the sub-

sequent formation of a ranked list of molecular de-

scriptors that should be taken into account when 

conducting in silico modelling. This approach has 

scientific value and may allow further researchstu-

dy to resolve the issue of finding cause and effect 

relationships between genotoxicity and features de-

fined by a set of molecular descriptors. In addition, 

the formation of a list of basic sets of molecular 

essential descriptors (see Table 2) may allow us 

to obtain a higher quality Ames/QSAR predictive 

model. The relevant methodology of using a limi-

ted set of molecular descriptors can also be applied 

to different classes of genotoxic compounds, which 

may further simplify the classification task solving 

chemical compounds with similar physical and 

chemical properties. A detailed analysis of molecu-

lar descriptors (see Table 2) in relation to the phy-

sicochemical, spatial, electronic features of a par-

ticular xenobiotic is quite interesting from a scien-

tific point of view. First of all, we focused on a set 
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of molecular descriptors that are repeated 3-4 times 

(see Table 2). A rather interesting result was ob-

tained after analysing scientific sources on the use 

of duplicate molecular descriptors in similar studies 

with the implementation of predictive QSAR mod-

els. The molecular descriptor GATS1p, which en-

codes information on molecular polarizability, was 

used as the main one in predicting chemical toxici-

ty for 1,163 agents. At the same time, the toxicity 

of xenobiotics was assessed using QSAR models on 

the test microorganism Tetrahymena pyriformis. 
Quite interesting is the fact that out of 753 mole-

cular descriptors, only 4 were selected in the mod-

elling, including GATS1p [48]. The R_TpiPCTPC 

descriptor was also selected as the main descriptor 

in the Ames/QSAR model used to assess mutage-

nicity, carcinogenicity and genotoxicity in mam-

mals [49]. SHBint2 is the main descriptor that was 

selected in the implementation of two machine 

learning models for determining the Ames mutage-

nicity. At the same time, three predictive models 

were implemented in the study [50]. The molecular 

descriptor BCUTp-1h, which is one of the criteria 

for assessing a xenobiotic molecule as to the level 

of intermolecular interactions, belongs to the main 

descriptor of one of the QSAR models proposed by 

the authors [51], which was developed to assess the 

toxicity of pesticides dissolved in water. The ob-

tained results add confidence that the formation of 

a list of important features, given by a set of mole-

cular descriptors, can be carried out in accordance 

with the methodology presented in this paper.  

Conclusions 

Among the four implemented Ames/QSAR 

predictive models (taking into account the full set 

of 1,442 molecular descriptors and 8,083 chemical 

compounds), the best one is the Random Forest 

method with an AUC  0.92 and an accuracy rate 

of 86%. The neural network demonstrated lower 

efficiency with 83% accuracy and 82% sensitivity. 

Comparison of classification reports for the two re-

gressions allows us to give preference to the LR-

SGD, which allows us to effectively identify a lar-

ger number of true positive chemical compounds 

in view of mutagenicity. The developed Ames/QSAR 

predictive models are balanced in terms of identi-

fying both positive (mutagenic) and negative (non-

mutagenic) cases, as defined by the recall and 

specificity metrics. 

The optimisation of Ames/QSAR models, 

which was implemented by reducing the amount of 

input data, was realised by using a list of molecular 

descriptors ranked according to the weighting coef-

ficients. This procedure, on the one hand, allowed 

us to develop a methodology for formation a list of 

the main descriptors that have a significant impact 

on the predicted variable and should be taken into 

account in modelling. On the other hand, the ge-

nerated list of descriptors was used to identify a li-

mited set of descriptors that would increase the 

predictive ability of the developed models. The 

conducted study showed that the use of a limited 

set of 276 molecular descriptors led to increase in 

accuracy for logistic regressions, which increased to 
80%, and for the neural network – to 84%. At the 

same time, the accuracy of the Random Forest 

model remained unchanged and was 86%. This re-

sult indicates that when developing Ames/QSAR 

models, it is necessary to take into account not 

only the basic, molecular descriptors that can be 

obtained with the maximum values of the weigh-

ting coefficients, according to the methodology 

developed by us, but also a set of features that 

may have a minor impact on the predicted vari-

able. In this situation, increasing the accuracy of 

the Ames/QSAR models used to assess the geno-

toxic effects of environmental factors can be 

achieved by combining of less influential descrip-

tors with other. The solution to the problem asso-

ciated with finding the best set of features for 

which the Ames/QSAR models developed by the 

authors will be most effective may be in search for 

cause and effect relationships between mutagenicity 

and physicochemical, spatial, electronic characte-

ristics of a particular xenobiotic, which are defined 

by a set of molecular descriptors.  

Modern trends in the development of artificial 

intelligence and approaches that are the basis for 

deep learning give hope for solving all the pressing 

issues in the context of creating effective in silico 
models for predicting Ames mutagenicity.  
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IN SILICO МОДЕЛІ ПРОГНОЗУВАННЯ МУТАГЕННОСТІ ЕЙМСА ФАКТОРІВ НАВКОЛИШНЬОГО СЕРЕДОВИЩА 
  
Проблематика. Розроблені та широко використовувані в минулі десятиріччя класичні in vitro та in vivo методи оцінки генетичних 
ефектів факторів навколишнього середовища є складними з точки зору їх проведення, є дороговартісними, тривалими в часі, 
мають проблему відтворюваності результатів експерименту в різних лабораторіях і можуть стикатися з етичними проблемами 
використання в експериментах теплокровних тварин.  
Мета. Розробка, оптимізація й апробація ефективних in silico моделей оцінки мутагенності Еймса впливу факторів навколиш-
нього середовища 
Методика реалізації. Генетична оцінка впливу факторів навколишнього середовища була проведена відповідно до набору хі-
мічних сполук, для яких експериментально, за допомогою in vitro тесту Еймса Salmonella/microsome, була отримана інформація 
про потенційну мутагенну активність. Для розв’язання задачі бінарної класифікації з метою формування двох класів ксенобіоти-
ків (мутаген/не мутаген) було розроблено чотири моделі машинного навчання. Загальну вибірку, що представлена набором із 
8083 ксенобіотиків, було розділено на тренувальну та валідаційну у співвідношенні 75 до 25% відповідно.  
Результати. Точність розроблених моделей машинного навчання була в межах 85%, що відповідає відтворюваності експери-
ментальних даних, отриманих у кількісному, напівкількісному та якісному тестах Еймса в різних лабораторіях. Запропоновано 
бінарний класифікатор, що за умов зменшення розмірності вхідних даних дає змогу підвищити точність результатів in silico про-
гнозування мутагенності Еймса. 
Висновки. Обґрунтовано необхідність оновлення та розширення переліку ефективних і більш продуктивних методів і підходів 
для оцінки генотоксичних ефектів факторів навколишнього середовища, що дає змогу уникнути застосування в експерименті 
теплокровних тварин, заощадити час та зменшити кількість хибнонегативних і хибнопозитивних результатів. Показано можли-
вість збільшення точності прогностичних моделей машинного навчання для оцінки генотоксичного потенціалу впливу факторів 
навколишнього середовища за умов зменшення розмірності набору даних.  

Ключові слова: мутація; генотоксичність; QSAR-модель; молекулярні дескриптори; моделі машинного навчання. 


