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Background. The treatment of cerebral blood circulation disorders remains a pressing issue due to their pre-
valence in the elderly. Brain tissue ischemia caused by such disorders leads to necrotic and neuroapoptotic
changes. To mitigate neuroapoptosis in the ischemic zone during the subacute period of the process, neuro-
protectors are used. In recent years, the neuroprotective properties of mesenchymal stromal cells (MSCs)
have been actively studied.

Objective. To compare effect of MSCs of different origin and the cell lysate of human MSCs from Wharton's
jelly (hWJ-MSC) on neuroapoptotic changes in the hippocampus of the rat brain after ischemia-reperfusion (IR).

Methods. A 20-minute bilateral transient IR of the internal carotid arteries was performed on 165 four-
month-old male Wistar rats. Following IR modeling, MSCs derived from hWJ-MSCs, as well as human
and rat adipose tissue, were injected intravenously into the femoral vein of the rats. Other groups of rats re-
ceived intravenous injections of fetal rat fibroblasts and cell lysate from hWJ-MSCs. Only an intravenous
injection of physiological solution was administered to the control group of rats. The level of DNA fragmen-
tation in the nuclei of hippocampal neurons on the 7th day after IR was assessed via flow cytometry.

Results. Experimental IR caused a 4.9-fold increase in the level of fragmented DNA in the operated rats
compared to the sham-operated animals. The use of MSCs of various origins and hWJ-MSC lysate reduces
the intensity of DNA fragmentation in the nuclei of rat hippocampal neurons, with the most pronounced effects
observed in groups treated with rat fetal fibroblasts (by 4.8 times), human adipose tissue MSCs (by 2.5 times),
and hWJ-MSC cell lysate (by 2 times).

Conclusions. A persistent focus of necrotic and apoptotic death of neurons in the hippocampus of rats is
formed after experimental 20-minute IR of rats' brain, as evidenced by increased levels of fragmented DNA.
Intravenous transplantation of MSCs of various origin and cell lysate from hWJ-MSC demonstrated a sig-
nificant effect in the IR model: neurodestruction and neuroapoptosis at the area of the ischemic brain dam-
age get less intensive. MSCs derived from human adipose tissue demonstrated superior neuroprotective po-
tential compared to rat adipose tissue MSCs in the IR model of the rat brain.

Keywords: ischemia-reperfusion; hippocampus; neuroapoptotic changes; flow cytometry; mesenchymal stromal
cells.

Introduction

Acute cerebrovascular accident (ACVA) is one
of the causes of stroke. The development of the
last pathological process is preceded by ischemia of
nervous tissue, which begins with the formation of
an acute neuronal energy deficit and further ma-
nifests itself in a sequence of reactions of the
"ischemic cascade" leading to irreversible damage
of the nervous tissue [1]. Nowadays thrombolytic
therapy is used for the treatment of the ischemic
stroke as a standard [2—4]. But the restoration of
blood supply to ischemic tissue, not surprisingly,

deepens the disruption of metabolic processes in
the brain tissue, which contributes to the occur-
rence of reperfusion injuries [1]. The desmosomes
destruction and remoteness of neurons from each
other lead to the spread of free radicals, as well as
secondary messengers, resulting in secondary dam-
age to previously intact neurons and an increase in
the area of the lesion [5—7]. It is worth noting that
in conditions of the ACVA apoptotic death of neu-
rons dominates over their necrotic death, the rea-
son for this is the induction of all those factors that
occur during secondary damage to nerve cells. In
ischemia-reperfusion (IR) which clinically corres-
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ponds to post-perfusion brain damage after throm-
bolysis the majority of neurons die by apoptosis [8].
A question may arise, why exactly the hippocam-
pus became the object of research in the IR model.
It has been proven that in case of acute IR injury
of the brain, the first morphological changes will
appear in neurons that are particularly vulnerable
to ischemia (pyramidal neurons of the CAl zone of
the hippocampus) [9]. In addition, post-ischemic
damage to the hippocampus contributes to the de-
velopment of vascular dementia because in the
hippocampus, IR induces neuronal death as a re-
sult of oxidative stress and zinc (Zn*") dyshomeo-
stasis of neurons [10].

That is why cytoprotective therapy should be
used to prevent and inhibit apoptosis. In our opini-
on, in the conditions of model IR, it is expedient to
evaluate and compare effect of mesenchymal stromal
cells (MSCs) of different origin and cell lysate from
human MSCs from Wharton's jelly (hWJ-MSC) on
neuroapoptotic changes in the hippocampus of the
rat brain after ischemia-reperfusion.

Materials and methods

Rats (165 animals, exclusively white four-
month-old sexually mature males of the Wistar line,
with a body weight 160 to 190 g), bred in the viva-
rium of the Vinnytsia National Pirogov Memorial
Medical University, were kept in standard condi-
tions (free access to food and water) and were used
for IR simulation. During the research, we scrupu-
lously followed both the methodological recommen-
dations of the Ministry of Health of Ukraine and
the requirements of the "General ethical principles
of animal experiments”" approved by the First Na-
tional Congress of Bioethics (Kyiv, Ukraine, 2001),
as well as the provisions of the Law of Ukraine
"On the Protection of Animals from Cruel Treat-
ment" dated February 26, 2006.

Experimentally, the IR model was created by
imposing ligatures on the common carotid arteries
bilaterally (for the 20 minutes). The rats were pre-
viously anesthetized (propofol anesthesia was used
(Propofol-novo, Novofarm-Biosintez LLC, Ukraine)
at the dose 60 mg/kg of body weight). This IR model
simulates the clinical manifestation of cerebral in-
farction and is used to experimentally study the ac-
tion of neuroprotective substances [11]. MSCs of
various origin at a dose 10° cells/rat (suspended in
0.2 ml of 0.9% NaCl solution) were injected intra-
venously into a catheter being in the femoral vein
immediately after IR. The MSCs injection into the
femoral vein was performed immediately after ap-

plying ligatures to the internal carotid arteries with
the aim of more effective neurological recovery
and reducing the area of the infarcted area. In ad-
dition, such the technique allowed using a smaller
dose of MSCs (the only 10° cells/rat) for a favour-
able effect [12—15]. MSCs of different origins (both
allogeneic and xenogeneic) were used in order to
compare the effect on the DNA destruction process
in neurons of the hippocampus of the rats' brain.

Methods for isolation of all the cell types used
in this study are described in details in previous
work [16]. Briefly, umbilical cords were taken into
investigation after written consent of women. All
the recommendations of the International Society
of Cell Therapy (2006) were taken into account
(cell adhesion, cell morphology, CD-markers and
differentiation capacity) [17]. Cells had spindle-
shaped form, were adhesive to plastic. According
to FACS-analysis with specific antibodies to CD-
markers (CD,,, CD,s, CD,;, CDy,and CD,,5) more
than 98% of the cells belonged to MSCs. Differen-
tiation into adipo-, osteo- and chondrocytes in
special media confirmed this conclusion (data not
shown). Rat fetal fibroblasts were isolated from
muscle tissue of 15-day-old rat embryos; the gesta-
tion period was determined by the copulation plug.
There are no specific markers of fibroblasts, they
express common with MSCs ones [18], so cells
were identified by spindle-shaped morphology and
hematoxylin-eosin staining They were used as he-
terologous analogue to xenogenic hWJ-MSCs as
their characteristics including differentiation capac-
ity are very close [18, 19]. The obtained results are
the next part of our studies [20—22].

Research design

All the experimental rats were divided into
7 groups (Table 1).

The Ist group included sham-operated rats,
i.e. rats, which successively were subjected to anes-
thesia, skin incision, vascular preparation (except-
ing ligation of the internal carotid artery (ICA)),
which taken together modelled the impact of trau-
matic experimental conditions. After such the sub-
sequent interventions the rats were injected with
0.9% NaCl solution into the femoral vein at a dose
of 2 ml/kg. Rats of the 2nd group (this group is
considered as the control one) were subjected to
20-minute ischemia of the brain (I) by placing a li-
gature on the ICA. In 20 minutes the ligatures from
the ICA were taken off thereby providing reperfu-
sion (R) of the brain tissue with next injection of
0.9% NaCl solution into the femoral vein at the dose
of 2 ml/kg. The 3rd group of animals immediately
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Table 1: Division of the experimental animals into groups

The group of rats Rats number

Description of the group

1st group 10
2nd group (control) 40
3rd group 20
4th group 20
5th group 25
6th group 25
7th group 25

Sham-operated animals + 0.9% NacCl solution (2 ml/kg)

IR + 0.9% NaCl solution (2 ml/kg)
IR + hWJ-MSCs (10° cells/animal)

IR + rat fetal fibroblasts (10°cells/animal)

IR + MSCs from human adipose tissue (10° cells/animal)

IR + MSCs from rat adipose tissue (10° cells/animal)

IR + cell lysate from hWJ-MSC (0.2 ml/animal)

Note. IR — ischemia-reperfusion, MSCs — mesenchymal stromal cells.

after IR received a transplantation of hWJ-MSCs
at the dose of 10° cells/animal. The 4th group of rats
underwent a single transplantation of fetal rat fi-
broblasts at the dose of 10° cells/animal immedi-
ately after IR. The 5th group of animals with IR
received MSCs of human adipose tissue at the dose
of 108 cells/animal (also at once after IR). Rats of
the 6th group were injected immediately after IR
with stem cells obtained from rat adipose tissue at
the dose of 10° cells/animal. Immediately after IR
the 7th group of animals was given a single dose
of cell lysate from hWJ-MSC (in a volume of
0.2 ml/animal). Standardization of hWJ-MSC lysate
was based on the equal amounts of intact cells and
cells that were lysed. As in all the experimental
groups we used 10°cells, the same cell amount
were subjected to lysis.

It would be correct to indicate the concentra-
tion by the amount of proteins at least. This has not
been done as there was no control for this measu-
rement — only cell amount. According to this pro-
tein content should be the same in both variants.

Out of 165 rats taken at the beginning of our
own research, 35 animals made it to flow cytome-
try (5 rats in each study group).

Next step in the experimental procedure was
to analyze the effect of MSCs of different origin
and cell lysate from hWJ-MSC on the neuroapop-
totic changes in the hippocampus of rats on 7" day
after IR (such the time interval was taken because
it corresponds to the subacute period of ischemia).
It is known the process of neuroapoptosis begins
with the destruction of cellular nuclei and deoxyri-
bonucleic acid (DNA) damage, so fragmented DNA
presence may be considered as a marker of apop-
tosis [23]. The method of flow cytometry permits to
estimate neuroapoptotic changes in the brain tissue
(in particular in the hippocampus of rats). With this

purpose 5 rats from each group were taken and de-
capitated using pentobarbital anesthesia ("Penbital”,
Bioveta JSC, Czech Republic, 100 mg/kg), their
brain was rapidly ablated at once after decapita-
tion [24, 25]. Nuclear suspensions of the hippo-
campal biopsies were prepared immediately after
the material was collected and washed with a cold
(+4—8 °C) phosphate-salt buffer with a pH of 7.4
(Sigma). SuStain DNA from Partec Company (Ger-
many) was added to the tissue to obtain a nuclear
suspension according to the instructions of the pro-
ducer. CellTrics 50 um disposable filters (Partec,
Germany) also were used. Flow cytometry was car-
ried out on a flow cytometer "Partec PAC" of the
Partec company, Germany. An ultraviolet light was
used to excite the fluorescence of the nuclear DNA
label — diamidinophenylindole. 20.000 events were
analyzed from each sample of nuclear suspension.
Flow analysis of DNA fragmentation was made using
FloMax software (Partec, Germany) by highlighting
Sub-G1 regions on DNA histograms (SUB-G0G1
regions on DNA histograms are RN1 before the
GO0GI1 peak, which indicates cell nuclei with DNA
content <2 DNA subunits (i.e. DNA defragmenta-
tion). Both necrotic and apoptotic cell death can
be assessed by flow cytometry. However, the pro-
posed model of subtotal IR ensures the predomi-
nance of apoptotic changes over necrotic ones [24].
It was established that after the restoration of blood
flow in the occluded vessel cell death by apoptosis
prevails over the necrotic process, since reperfusion
can induce all the factors that occur during secon-
dary damage to neurons. At the same time, the
death of cells by apoptosis is not accompanied by
the development of inflammation, since the inte-
grity of their membranes is not disturbed. During
apoptosis, DNA fragmentation, degradation of cyto-
skeletal and nuclear proteins, cross-linking of pro-
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teins, formation of apoptotic bodies, which are sub-
sequently subjected to phagocytosis by phagocytizing
cells, occur in the cell [26].

The statistical analysis of the results was car-
ried out using the methods of parametric (des-
criptive statistics, Student's test) statistics in the
case of a normal distribution of the variation series
(tested by the Shapiro—Wilk test) and non-para-
metric (Wilcoxon—Mann—Whitney U-test) statistics.

Results
The statistically significant increase in the level

of fragmented DNA (by 4.9 times) was found in the
control group of rats on the 7™ day of experiment
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thology (IR without treatment) probably decreased
from 1.4 to 4.8 times (Table 1, Figs. 3—7), exclud-
ing the group of rats that were injected the stem
cells from rat adipose tissue.

We emphasize that transplantation of MSCs
obtained from rat adipose tissue to experimental
animals with IR (the 6th group) did not in any way
affect the intensity of DNA fragmentation in the
nuclei of hippocampal neurons of rats. At the same
time transplantation of fetal rat fibroblasts and
MSCs obtained from human adipose tissue and
cell lysate from hWJ-MSC in rats with IR had a
cerebroprotective effect, which was indicated by a
probable decrease of DNA fragmentation in the

nuclei of hippocampal neurons (relative to the
control group) by 79.1%, 60.2%, and 48.9%, res-
pectively.

Thus, inhibition of neuroapoptosis intensity in
a hippocampus of the rats' brain under the action
of fetal rat fibroblasts, MSCs obtained from human
adipose tissue and cell lysate from hWJ-MSC, ex-
plains a significant reduction in the ischemic focus
due to the preservation of the number of morpho-
logically intact neurons, shown by us earlier [22, 28],
and is one of the mechanisms of cerebroprotective
action of MSCs in postreperfusion brain damage.
Morphological confirmation of this opinion is the
results of our research, published previously [22, 28].

Table 2: The effect of intravenous injection of mesenchymal stromal cells (MSCs) of different origin and cell lysate from hWJ-MSC
on DNA fragmentation of the nuclei in hippocampal neurons in rats on 7th day after transient bilateral ischemia-reperfusion of the

internal carotid arteries (M + m)

Group number

Experimental conditions (rats' number) SUB-G0G1 %
Sham-operated animals + 0.9% NacCl solution 1 (n=95) 3.52+£0.18
IR + 0.9% NaCl solution (the control group) 2 (n=Y5) 17.35+1.21*
IR + hWJ-MSCs 3(n=5%) 12.69 +2.76*
IR + rat fetal fibroblasts 4 (n=Y5) 3.63+£0.70#$
IR + MSCs from human adipose tissue 5(n=5) 6.91 + 1.40%#$
IR + MSCs from rat adipose tissue 6 (n=15) 19.09 £2.37*
IR + cell lysate from hWJ-MSC 7 (n=23) 8.87 £ 1.28#%

Notes. SUB-G0G1% — areas on DNA histograms — RN1 before the GOG1 peak, which indicates cell nuclei with DNA content
<2 spirals; * — p<0.05 relative to the sham-operated animals; # — p<0.05 relative to the control group; $ — p<0.05 relative to
animals with ischemia-reperfusion (IR) + stem cells from rat adipose tissue.
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Discussion

Improvement of cerebral blood circulation af-
ter thrombolysis additionally to positive dynamics
on the course of the penumbra zone formation also
can have at least one negative effect — it can acti-
vate the process of neuroapoptosis [29].

One of the neuroapoptosis markers is the level
of fragmented nuclear DNA. DNA fragmentation is
one of the main biochemical signs of programmed
cell death [30].

Taking this into account it was appropriate to
characterize the influence of MSCs (of various ori-
gins) and cell lysate from hWJ-MSC on neuro-
apoptotic changes in the rat brain hippocampus by
the method of flow cytometry (which is the mo-
dern and one of the best methods for assessing of
DNA fragmentation in neurons) in the postreper-
fusion cerebral ischemia conditions on the IR mo-
del. The IR model choice was due to the fact that
clinically this model corresponds to a post-perfusion
injury of the brain after thrombolysis, and the ma-
jority of neurons die as a result of apoptosis [31].

Early brain injury after IR induces morpholo-
gical changes in neurons with cytosolic microvacuo-
lation. Microvacuoles appear within 15 min after
reperfusion in particularly vulnerable neurons (hip-
pocampal CAl pyramidal neurons, cortical pyrami-
dal neurons in the layers 3 and 5) [9].

As a part of the regenerative strategy stem cell
transplantation in ischemic stroke became a new
impetus [32, 33].

The modern views of many scientists are fo-
cused on the ability of stem cells to secrete sub-
stances that interfere with many pathogenetic cas-
cades and contribute to the survival, migration, dif-
ferentiation and functional integration of transplan-
ted cells into the brain during acute ischemia [34].

The impetus for this was the results of ex-
periments on animal models and several clinical
trials [35, 36].

MSCs have several advantages over other
stem cells due to easier methods of their obtaining,
low risk of tumorigenicity and lack of ethical prob-
lems [37].

Our study shows that intravenous administra-
tion of fetal rat fibroblasts, MSCs from human adi-
pose tissue and cell lysate from hWJ-MSC after
the model IR leads to a decrease in the fragmented
DNA level, to a decrease of apoptosis in the rat
hippocampus 7 days after the IR. Thus suppression
of the neuroapoptosis intensity in the rat brain
hippocampus under the influence of MSCs, as well
as cell lysate from hWJ-MSC, indicates reduction

in the focus of the ischemic penumbra due to pres-
ervation of the morphologically intact neurons num-
ber and is one of the leading mechanisms of the
neuroprotective effect of the investigated substances
in post-perfusion brain damage.

Xenotransplantation of the MSCs from human
adipose tissue has a significantly better neuropro-
tective effect on the rat hippocampus after the IR.
In our opinion, this is due to the fact that trans-
planted MSCs from human adipose tissue release
biologically active substances that can increase the
plasticity of the host's brain (in the case of experi-
mental stroke). The obtained results require in-depth
research, becuase in the experiment of Gutiérrez-
Fernandez et al. [38] it has been shown that trans-
plantation of human adipose MSCs (xenogeneic
transplantation) and rat adipose MSCs (allogeneic
one) in permanent middle cerebral artery occlusion
(pMCAO) in rats used as a treatment for cerebral
infarction demonstrated no difference in the reco-
very and reduction of ischemic brain damage in
rats, had no side effects and did not form tumors.
And in the study of Chung et al. [39] it has been
established that the neuroprotective effect of MSC
treatment from human adipose tissue (xenogeneic
transplantation) may be associated with the pre-
vention of the blood-brain barrier destruction and
endothelial damage and the reduction of neutrophil
infiltration, and the use of MSCs from human adi-
pose tissue is highly effective.

Fetal rat fibroblasts were used in this study
with the aim to change xenogeneic hWJ-MSCs by
heterogenic (rat) cells with close characteristics and
compare their effect. As it is known that fetal
MSCs and fetal fibroblasts have common signs [18]
we think such substitution is legitimate. That’s
why, to our opinion, their transplantation in the
IR model in rats, caused a better immunomodula-
tory effect.

Fetal rat fibroblasts belong to embryonic stem
cells are poorly differentiated. This may be partially
mediated by the induction of angiogenesis and
neurotrophic factors and the inhibition of the ex-
pression of inflammatory and apoptotic factors [40].
As for MSCs from human or rat adipose tissue,
they are adult stem cells, and therefore have many
similar properties to other MSCs. Numerous resear-
chers have pointed out that the neuroprotective
effects of MSCs on the ischemic brain are not
realized directly through their differentiation, but
by the way of paracrine signalling through trophic
factors, which promotes functional recovery by
multiple mechanisms, including immunomodula-
tion, proangiogenic signalling, neurotrophic factor
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secretion, and neuronal differentiation [41—44].
Thus, in investigation of Taei A ef al. it was shown
that the neuroprotection of the hippocampus in
conditions of ischemia is provided by the secre-
tome of MSCs obtained from human embryonic
stem cells [40]. In our opinion, cell lysate from
hWJ-MSC had a positive effect on DNA fragmen-
tation through remote modulation (as a result of
the release of various bioactive molecules).

The results of our study are consistent with
results of the recent investigations showing that
MSC treatment can stimulate neurogenesis while
reducing the extent of damage and inflammation,
and improve neuroprotection after IR brain injury
in the rat hippocampus [38, 39, 45].

The regenerative potential of MSCs during
experimental IR is explained not by replacement of
damaged cells in the ischemia zone, but by their
release of bioactive substances that contribute to
neurogenesis and protection of brain tissues from
ischemic damage [40]. Thus, intravenous trans-
plantation of MSCs can increase the therapeutic
efficiency of reperfusion therapy in cerebral ische-
mia, which indicates the prospect of their use in
cell therapy of acute cerebral ischemia.
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Conclusions

20-minute bilateral transient ischemia-reperfu-
sion of the internal carotid arteries of rats causes a
stable focus of necrotic and apoptotic destruction of
neurons in hippocampus, which is manifested with
an increase in fragmented DNA level (by 4.9 times).
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BMMMB ME3EHXIMAINIbHUX CTPOMAINbHUX KNITUH PI3HOMO NMOXOMXEHHA HA ®PArMEHTALIIO OHK AOEP HEMPOHIB
MMNOKAMIMY FONOBHOIO MO3KY LUYPIB NICNs IWEMII-PENEP®Y3IT

1BiHHI/IL|,bKI/Il7I HauioHanbHU MeanyHui yHiBepcuteT im. M.1. Muporoea, BiHHUus, YkpaiHa

2[1Y “HaLuioHanbHWit HAaYKOBUIA LIEHTP “IHCTUTYT Kapaionorii, KMiHIYHOI Ta pereHepaTMBHOI MeAULIMHY iMeHi akaaeMika M.[. CTpaxecka
HauioHanbHoT akageMii MeguyuHnx Hayk ykpaiHn”, Kuis, Ykpaina

*TOB “BioTexCom”, Kuis, YkpaiHa

*lHcTUTYT MonekynsipHoi Giororii Ta reHeTvkn HAH Ykpaitu, Kuis, YkpaiHa

Mpo6nemaTtuka. JlikyBaHHsi NOpyLUEeHb MO3KOBOrO KpOBOOOIry 3anulaeTbCs aKTyarnbHOK Npo6remoro vepes iX MOLUMPEHICTb cepen
NiTHIX Ntoaen. [wemis MO3KOBOT TKaHUHW, BUKIUKaHA TaKUMW NOPYLUEHHAMM, NPU3BOAUTL A0 HEKPOTUYHMX i HEMPOanonTUYHMX 3MiH. [ns
3MEeHLUEHHS HerpoanonTo3y B iLIeMIiYHi 30Hi nig Yac nigrocTporo nepiogy nNpouecy BUKOPUCTOBYIOTLCA HerponpoTekTopu. OcTaHHIMK
poKaMu akTUBHO AOCHIIKYTECA HEMPONPOTEKTOPHI BNACTUBOCTI Me3eHXiMarnbHNX CTpomanbHux knitud (MCK).

MerTa. lNMopiBHATK BNnmMB MCK pi3HOro noxomeHHst Ta kniTuHHOro nisaty MCK i3 BapToHoBMX AparniB nynoBUHW NOOUHW HA HENPO-
anonTWYHi 3MiHM B rinokamni MO3Ky LUypiB nicns MoAenbHoi iwemii-penepdyaii (1P).

MeTtoaumka peanisauii. Ha 165 yotupumica4Hmx camusx Lypis niHii Bictap BukoHyBanu 20-xBUnvHHY A4BOGIYHY TPaH3UTOPHY P BHYTPILLHIX
CoHHux apTepint. MNicna mogemoBaHHs IP MCK i3 BapToHoBux aparnis nynoBuHu nioguHn, a Takoxx MCK i3 )vpoBOi TKaHUHU NoavHN Ta
Liypa BBOAWMM BHYTPILLUHBOBEHHO Y CTErHOBY BEHY LUypiB. |HWKUM rpynam LwypiB BHYTPILLHBOBEHHO BBOAMNM deTarnbHi dibpobnacTtu
wypa i KniTMHHUA nisat i3 BapToHoBux Aparnis nynoBuHW NoAvHU. KOHTPOMbHIN rpyni LypiB BBOAUMM nue (i3ionNoriyHnii po3ymH.
PiBeHb dparmenTauii AHK y sapax HelpoHiB rinokamny Ha 7-my Ao6y nicns IP ouiHioBanM MeTogomM npoToYHOT LIMTOMETPII.
Pe3ynbTaTtun. EkcnepvmeHTansHa IP Buknukana 4,9-kpatHe 36inbLueHHs piBHs dparmeHToBaHoi [HK y onepoBaHux LypiB NOPIBHSHO 3
ncesgoonepoBaHnMu TBapuHamn. Bukopuctania MCK pisHoro noxomxkeHHsi Ta nisaty BapToHOBMX AparmiB MynoBWHW NIIOANHN 3HUXKYE
iHTeHcuBHICTb pparmeHTauii AHK y sapax HeNpoHiB rinokammny LUypiB, NPUYOMY HaWBMPaXeHILLUA edpekT cnocTepiraBcs B rpynax, SKum
BBOAWNM dpeTanbHi ibpobnactu wypis (y 4,8 pasy), MCK 3 xunpoBoi TkaHuHu moauvHu (y 2,5 pasy) Ta knituHHui nisat MCK i3
BapToHoBMX Aparnis nynoBuHU nMogunuy (y 2 pasu).

BucHoBku. Y rinokamni wypiB nicns ekcnepumeHTtanbHoi 20-xBunuHHOi IP Mo3ky hopMyeTbCS CTiliKuIA ocepeoK HEKPOTUYHOI 1 amno-
NTOTUYHOI 3armbeni HeMpOHiIB, Lo NPoABRSETLCA 36inblueHHAM dparmeHToBaHoi [AHK. BHyTpilHboBeHHa TpaHcnnaHTauiss MCK pisHoro
noxoaxeHHs Ta nisaty MCK i3 BapToHoBux gparnis nynoBUHW NMOAMHWM AEMOHCTPYE 3Ha4YHUA edekT y mogeni IP: HepoaecTpykuis Ta
HenpoanonTo3 y 30Hi iLLEMIYHOTrO YpaXKeHHs1 TofMIOBHOrO MO3KY CTartoTb MeHLU iHTeHcuBHUMK. MCK, oTpuMaHi 3 XMpOBOI TKaHUHW NIOOWHY,
nokasanv BULLMIN HeMpONpPOTEKTOPHWIA NoTeHuian nopisHaHO 3 MCK i3 »xMpoBoi TkaHWHK Wwypa B mogeni IP Mo3ky LwypiB.

KnroyoBi crnoBa: iwemis-penepdyasisi; rinokamn; HeMpoanonTUYHi 3MiHU; NPOTOYHA LIMTOMETPIS; Me3eHXiMarnbHi CTpOMarnbHi KMiTUHK.



