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One of the most important components of environmental protection is the development of hygiene standards 
aimed at shielding the human population from the adverse effects of environmental pollution. The European 
and American Chemical Societies have reported approximately 800,000 chemicals, with no available infor-
mation on potential risks to human genetic health and negative environmental impact. Given the exponen-
tial increase in chemical compounds generated by humanity in various industries, the issue of effectivly iden-
tifying and accounting for various genetic and carcinogenic hazards is particularle relevant. The assessment 
of potential genotoxicity of environmental factors is an integral part of genetic safety assessment for both 
prokaryotic and eukaryotic organisms, including humans. The evaluation of the genetic activity of chemical 
compounds is a fundamentsl requirement for their comprehensive toxicological assessment. From the per-
spective of genetic and epigenetic mechanisms of influence, our review considers standard methods for de-
tecting and assessing the potential genetic hazard associated with environmental factors. These methods are 
part of a standard, generally accepted test system battery. Additionally, the review covers some modern ex-
perimental methods that are not widely accepted today. A detailed analysis of approaches to the assessment 
of potential genetic mutagenic activity was carried out, presenting their main advantages and disadvantages. 
Taking into account the recommendations issued by the Organisation for Economic Co-operation and Deve-
lopment on testing hazardous chemical compounds that may affect human health, an attempt was made to 
find optimal approaches to solving the task of predicting genetic effects and their consequences for humans. 

Keywords: genome; deoxyribonucleic acid damage; genotoxicity; carcinogenesis; mutagenesis; mutation test 
system. 

 

Introduction 

The early 20th century saw the rapid develop-

ment of the natural sciences, particularly as part of 

the sixth technological paradigm, which relies on 

advances in modern computer technology, bio-

technology, molecular biology, genetic engineering, 

artificial intelligence systems, nanotechnology, etc. 

In such circumstances, researchers are paying sig-

nificant attention to life sciences at the molecular 

level, based on the development and implementa-

tion of modern methods for biopolymer sequenc-

ing, which allowed nucleotide sequencing of the 

human genome for the first time [1]. The progres-

sive development of computational molecular biol-

ogy has led to the formation of the main vector of 

development of modern medical sciences in view 

of a personalised and individualized approach. This 

approach is crucial for determining treatment stra-

tegies, which can be guided by the quantitative and 

qualitative composition of the coding and regula-

tory DNA regions of the human genome. In terms 

of the development of personalised medicine, the 

results of the pilot phase of the 1000 Genomes 

Project, which made it possible to study the nature 

of genetic mutations in different animal populati-

ons and establish links between the respective types 

of nucleotide substitutions and the manifestations of 

various genetic and oncological diseases, were quite 

important from the scientific point of view [2].  

In July 2015, the Chemical Abstracts Service 

of the American Chemical Society announced the 

registration of the one hundred-millionth chemical 

substance to its chemical substance database. Just 

five years later, the number of registered chemical 

substances was on the verge of surpassing 200 mil-

lion, with many of them lacking studies on their 

biological effects or being studied under significant 

limitations regarding their ultimate genotoxic effects. 

As of today, the trend of increasing the number of 

registered chemical compounds continues. By the 

beginning of 2020, information was available on 

more than approximately 100,000 types of chemical 

substances industrially produced and capable to ad-

versely affect human health or affect the global en-

vironment [3]. A serious problem arises from the 

fact that newly developed chemical, physical, and 

biological agents of potential genotoxicity can in-

duce changes in DNA, which in turn can lead to 

hereditary and somatic diseases [4, 5]. To ensure 
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the viability of the organism at different stages of 

ontogenesis and to preserve the reproductive func-

tion, the DNA molecule, which is the carrier of 

hereditary information, must exhibit genomic sta-

bility, and this can be ensured by excluding the in-

fluence of genetically active substances on the he-

reditary information [6, 7]. Furthermore, the func-

tioning of the repair system, which is quite conser-

vative in terms of evolution and molecular mecha-

nisms, allows maintaining genomic stability by re-

pairing damage caused at the level of the DNA 

molecule [6, 8]. Genetic material can be exposed 

to a number of internal and external factors that 

may cause damage [6]. The system for maintaining 

genome stability is quite effective given the large 

number of different damages that can occur over a 

fixed period of time at the level of a single DNA 

molecule in a single cell [8]. Damage to the ge-

netic material associated with changes in the nu-

cleotide sequences at the level of coding DNA re-

gions is crucial for the synthesis of the final gene 

product [9, 10]. Such modifications, depending on 

the nature of their occurrence, can range from sim-

ple substitutions of heterocyclic bases to more com-

plex ones, which are most often associated with 

single- or double-stranded DNA breaks [9]. Ac-

cording to scientific papers [6, 11], the approxi-

mate number of damages can be 70,000 per day per 

human cell. Errors during DNA replication, repair 

and recombination lead to point mutations [12] 

(including single nucleotide substitutions and inser-

tions/deletions of heterocyclic bases), chromosomal 

aberrations and genomic mutations [13]. According 

to [14], the integrity of cellular DNA is under con-

stant stress, which is associated with 30,000 recor-

ded damages to genetic material per day.  

DNA repair is crucial for preventing the ac-

cumulation of damage at the level of genetic mate-

rial [6, 8, 13, 14]. Disruption of repair processes can 

lead to destabilisation of cellular metabolic homeo-

stasis and may contribute to carcinogenesis through 

dysregulation of cell growth and apoptosis [15, 16]. 

Genomic instability is a universal feature of all 

cancers [15]. DNA damage is also crucial for the 

development of hereditary and non-genetic disea-

ses [17–19]. 

In terms of studying the epigenetic mecha-

nisms of environmental factors, special attention 

should be paid to the study of the peculiarities of 

the initiation of histone post-translational modifi-

cations, which do not change the qualitative and 

quantitative composition of DNA, but play a cru-

cial role in the regulation of biologically important 

cellular processes, including transcription, replica-

tion and DNA repair [20–22]. This process is real-

ised through the methylation, acetylation, ribosyla-

tion, ubiquitination and phosphorylation of serine 

and threonine, which occur at the level of amino 

acid residues shaping the primary amino acid se-

quence of nuclear proteins [20, 22]. Post-transla-

tional modifications of proteins by ubiquitination 

underlie intracellular signal transduction, activation 

and coordination of molecular mechanisms for 

maintaining the stability of genetic material [7]. 

The authors of [7] consider ubiquitination as a vital 

mechanism in the regulation of cellular homeosta-

sis, which is implemented with the participation of 

a large number of enzymes and proteins [7].  

DNA methylation is an important mechanism 

of chromatin conformation change lying at the heart 

of gene expression regulation and occurs in specific 
highly conserved sites – CpG islands located at the 

5′ end of protein gene coding regions [15, 23]. For 

example, benzaprene, one of the first investigated 

and studied carcinogens from the polycyclic aro-

matic hydrocarbon family, can induce the onset of 

cancer through inhibition of methylation processes 

near the promoter regions of tumor suppressor 

genes [23, 24].  

For the purpose of identifying possible causes 

of induced carcinogenesis, scientists pay consider-

able attention to the study of processes associated 

with DNA damage and repair in the case of onco-

genic virus replication [25]. In such a situation, the 

process of malignancy of hereditary information 

can also be initiated by damage that promotes the 

viral DNA integration (e.g., human papillomavirus, 

Merkel polyomavirus, hepatitis B virus, etc.) into 

the human genome [26, 27]. 

Despite the fact that carcinogenesis is multi-

stage [28, 29], one of the primary tasks for resear-

chers is to obtain information about the peculiarities 

of the initiation of the malignancy process [30], 

which can be induced by environmental factors of 

chemical, physical or biological nature [4–6]. On-

cological diseases are promoted by the aging pro-

cess, which is primarily associated with systemic 

changes caused by the accumulation of errors at 

the level of genetic material [23, 31, 32]. According 

to scientific paper [33] experimentally proved the 

relationship between changes in the epigenetic pro-

file and aging of unicellular and multicellular euka-

ryotic organisms. 

The relevance of studying the molecular me-

chanisms of induced DNA damage in carcinoge-

nesis and mutagenesis is obvious. The need for re-

search in this area is confirmed by the experimental 

data obtained. According to [34], most mutagenic 
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agents or their metabolites exhibit potential car-

cinogenic properties through inducing DNA se-

quence changes in pro- and eukaryotic genomes. 

Experimental data on the detection and assessment 

of the potential genetic hazard from environmental 

factors indicate some discrepancies in their inter-

pretation. In our opinion, this is due to the use of 

different methodological approaches for assessing 

genotoxic effects in laboratories. Therefore, there 

are publications stating that some genotoxic sub-

stances do not exhibit mutagenic properties. To 

date, chemical compounds that do not cause ge-

netic changes but are genotoxic have been identi-

fied and studied [35], and this fact can be ex-

plained by the use of either insufficiently adequate 

research methods or imperfect methods of effect 

assessment by the authors. In addition, in vitro ex-
periments conducted with prokaryotic and eukary-

otic indicator cells show a fairly large number of 

false-positive and false-negative results, which in-

dicates the need for additional research to improve 

standard methods for assessing genetic safety, as 

they have significant limitations. For example, for 

the Ames test, the main problem is the discrepancy 

observed when comparing the molecular organisa-

tion of hereditary information and repair systems 

of eukaryotic and prokaryotic organisms. One of 

the significant factors adversely affecting the in vitro 
specificity of standard methods belonging to the 

battery of test systems is the use of metabolically 

incompetent prokaryotic and eukaryotic cells. Meta-

bolic activation by S9 fraction can partially com-

pensate for the absence of phase I enzymes, while 

phase II metabolic enzymes catalysing the forma-

tion of DNA-reactive metabolites and participating 

in their biotransformation are not considered. The 

main problem of popular in vivo DNA comet assay 

is the variability of electrophoregrams, which is 

primarily due to different conditions of indicator 

cell cultivation. When conducting research to iden-

tify genotoxic substances, it is also necessary to 

consider not only their genetic mechanisms, but 

also epigenetic mechanisms of direct and indirect 

effects on the DNA molecule.  

Based on the above, it can be argued that in 

the context of an exponential increase in the num-

ber of chemicals requiring genotoxic assessment, 

there is an urgent need to improve the efficiency 

and predictive ability of existing methods for toxi-

cological testing [36, 37]. The purpose of the pre-

sent review is a detailed literature analysis regard-

ing existing methods for assessing the genotoxicity 

of environmental factors. Taking into account the 

ICH M7 "Evaluation and Control of DNA-Reactive 

(Mutagenic) Impurities in Pharmaceuticals to Limit 

Potential Carcinogenic Risk" [38] and the OECD 

guidelines for testing chemical compounds, a com-

parative analysis of approaches to genotoxicity as-

sessment was carried out, showing their advantages 

and disadvantages. The necessity of applying mo-

dern in silico methods for assessing the genotoxic 

potential of environmental factors was shown. 

1. Sources and Types of DNA Damage  

The study of the peculiarities of interaction 

and the mechanisms of influence of various chemi-

cal and physical factors on genome stability is quite 

important from a scientific point of view [39]. De-

pending on the localisation of chemical factors in-

ducing DNA damage, we can distinguish between 

endogenous (physiological and metabolic) and ex-

ogenous factors [40–43]. The DNA molecule can 

be affected by endogenous and exogenous factors 

through direct and indirect action. The direct me-

chanism of action is determined by the direct in-

teraction of endogenous or exogenous factors with 

the DNA molecule, which leads to the breakdown 

of chemical bonds at the DNA level and initiates 

changes in its spatial structure [44, 45]. The mecha-

nism of mediated action by exogenous and endo-

genous factors is realized through their metabolism 

and activation of intermediate products, whose in-

teraction with DNA underlies its damage [46, 47]. 

While exogenous and endogenous factors have a 

great potential for modifying genetic information, 

the relative contribution of internal and external 

factors to the incidence of cancer remains uncer-

tain [6].  

1.1. Endogenous factors  

Each cell of the human body can suffer a 

large amount of DNA damage per day, most of 

which is usually caused by cellular metabolic pro-

cesses [11]. As for the effect of mutagens on any 

living cell, they (mutagens) are divided into "direct" 

ones, i.e. those whose effect is caused by the origi-

nal chemical structure of the chemical substance 

and "indirect" ones, whose effect is caused by their 

intermediate metabolites. In this case, we can refer 

to "cellular metabolic processes". The mechanism 

of DNA damage by endogenous substances is the 
basis for the appearance of mismatches in the substi-
tution of heterocyclic bases, inter- and intra-chain 

cross-linking, and the formation of an abnormal 

DNA structure [6, 39, 41]. Such adverse effects are 

associated with hydrolysis, oxidation, and alkyla-

tion reactions resulting from normal physiological 



6                                                                                                                     Innov Biosyst Bioeng, 2024, vol. 8, no. 2    

  

 

 

processes [6]. Biological macromolecules are ex-

tremely susceptible to spontaneous chemical reac-

tions, primarily involving hydrolysis, which are res-

ponsible for the formation of apurinic/apyrimidinic 

sites where heterocyclic nitrogenous bases may be 

absent [40, 41, 48]. The induced deamination of 

nitrogenous bases of DNA nucleotides is also asso-

ciated with hydrolysis reactions [39]. The speed of 

this process can be significantly increased by ex-

posure to ultraviolet radiation, DNA intercalating 

agents, nitric acid and sodium bisulfite [49, 50–52].  

A fairly large amount of DNA damage by en-

dogenous chemicals occurs due to DNA's partici-

pation in hydrolytic and oxidative reactions with 

water and reactive oxygen species present in the 

cell [48]. Spontaneous mutations characteristic of 

all cells can originate from the chance misincorpo-

ration of nucleotides during DNA replication or 

from DNA lesions that arise between replication 

cycles and are not repaired correctly [53]. Despite 

the highly developed replication apparatus, errors 

in the incorporation of pyrimidine and purine hete-

rocyclic bases occur with a frequency of 108 to 

106 per cell per generation [15, 54–56].  

 The reactions of DNA with reactive interme-

diate of oxygen, at high concentrations, contribute 

to the development of hereditary and sporadic can-

cers [57]. Violation of the redox balance due to an 

increase in the concentration of active oxygen can 

lead to dysfunctions manifested in the form of 

damage to nucleic acids, protein molecules, lipids 

and membrane structures, which may be associated 

with the development of cardiovascular and neuro-

degenerative diseases [9, 41, 58]. At the same time, a 

reduced concentration of reactive oxygen species can 

induce chronic granulomatous disease and autoim-

mune disorders [42]. Reactive oxygen and nitrogen 

species are involved in the formation of more than 

70 oxidised varieties of heterocyclic bases and acid 

sugars as part of modified DNA monomeric units 

and affect the stability of genetic information [59].  

1.2. Exogenous factors 

DNA damage can also be caused by environ-

mental exposure to the genetic apparatus [16, 40]. 

Within the framework of the present review, spe-

cial attention should be paid to the study of the 

impact of exogenous factors whose negative effect 

on the human genetic apparatus can be avoided, 

especially in a situation where the genotoxicity of a 

certain chemical compound has been proven by ex-

perimental methods or by modern predictive in silico 
models [41, 60]. Scientific papers [15, 40, 58, 61] 

provide information on the peculiarities of endoge-

nous and exogenous DNA damage and highlight the 

functioning of the repair system. The basic exogenous 

factors of physical nature (environmental factors) 

that can induce processes of damage to genetic 

material include ionising, ultraviolet and infrared 

radiation, as well as chemical agents exhibiting 

genotoxicity properties [6, 40, 61]. Table 1 provides 

information on the basic endogenous and exoge-

nous factors that can affect genetic stability, taking 

into account the specifics of damage and activated 

repair mechanisms. 

Exogenous sources of damage to genetic sta-

bility, such as ionising radiation (X-rays), cosmic 

and ultraviolet radiation, and exposure to mutage-

nic chemicals, contribute to the accumulation of 

DNA damage every cell must counteract on a daily 

basis [6, 16].  

Paper [62] investigated the effect of ionising 

radiation on the central nervous system of higher 

eukaryotic organisms. Radiation-induced damage to 

the central nervous system is associated with the 

development of oxidative stress, the accumulation 

of free radicals, which is the basis of molecular and 

cellular changes, including DNA damage, which 

can lead to disorders in the structure of neurons, 

synaptic plasticity, cause systemic inflammation 

and lead to neuronal death [62].  

The direct effect of infrared radiation causes 

chemical changes in DNA, disrupts its structure, 

which may affect the replication process. This type 

of damage accounts for 30–40% of chemical modi-

fications of DNA induced by infrared radiation [39]. 

The indirect impact of infrared radiation is associ-

ated with the processes of radiolysis of water mole-

cules, which is a stimulating factor for the accu-

mulation of free radicals in the cell directly in-

volved in oxidative DNA damage [63, 64].  

Ultraviolet radiation, as one of the environ-

mental factors exerting constant pressure on the 

genomic integrity of the body, is one of the most 

common hazards to human health. Radiation with 

wavelengths from 280 to 315 nm is one of the most 

powerful physical agents that can induce various 

mutagenic and cytotoxic disorders [65]. Ultraviolet 

radiation can initiate the synthesis of cyclobutane 

pyrimidine dimers and pyrimidine-(6,4)-pyrimidine 

photoproducts with subsequent changes in the spa-

tial structure of DNA and blocking of transcription 

and replication processes [16, 66]. 

The study of the impact of various physical 

and chemical agents on the human genetic appara-

tus is one of the priority areas of modern genetic 

toxicology. This interest is primarily related to the 

problem of inadequate assessment of genetic safety 
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Table 1: Endogenous and exogenous sources of DNA damage [17, 40, 58, 61] 

Factors 
Damage 

mechanism 
Damage result 

Repair 
mechanisms 

Endogenous 

Oxidation 
Modification of heterocyclic 

nitrogenous bases 
Nitrogenous base excision repair  

Alkylation 
Methylation of heterocyclic 

nitrogenous bases 

Direct repair 

Nitrogenous base excision repair  

Repair of mismatched 
nitrogenous base pairs 

Hydrolysis 

Creation of apurinic sites 
Nitrogenous base excision repair  

Post-replicative repair 

Cytosine deamination 
and uracil synthesis 

Nitrogenous base excision repair  

DNA polymerase 
errors 

Substitutions, insertions and 
deletions of heterocyclic 

nitrogen bases 
Mismatch repair system 

Exogenous 

Ionizing radiation 
Double-strand breaks 

Non-homologous joining 
of the ends of DNA; 

Homologous recombination 

Single-strand breaks Nitrogenous base excision repair  

Ultraviolet radiation 
Cyclobutane pyrimidine 

dimer synthesis 
Nucleotide excision repair  

Chemical com-
pounds (aromatic 
amines, alkylating 

agents, natural 
toxins, chemo-

therapeutic agents)  

Damage to heterocyclic 
nitrogenous bases; 

DNA adduct synthesis 

Nucleotide excision repair 

Direct repair 

Mismatch repair system 

Repair of mismatched nitrogenous 
base pairs 

 

 
of a large number of registered chemicals for the 

human population [3]. To date, the main obstacle 

to solving this problem is the lack of free access to 

information on more than 50,000 chemicals, as 

such information is considered confidential [67]. In 

addition, for a large number of chemicals, expe-

rimental toxicological data are limited [36, 68], 

making it impossible to use classical in vitro ap-

proaches to assess the genotoxicity of these che-

micals [68]. In everyday life, the human hereditary 

apparatus is exposed to a large number of external 

DNA-damaging chemical agents [16, 41, 59]. De-

spite the fact that the number of chemicals affect-

ing genetic stability is increasing every year, the 

mechanisms of DNA damage for the most com-

mon structural classes of exogenous agents such as 

aromatic amines, polycyclic aromatic carbohydrates, 

natural toxins, alkylating agents and chemothera-

peutic agents are now well understood [16, 41].  

Since the second half of the 21st century, 

there has been an active development of genetic to-

xicology as a science associated primarily with the 

discovery of the spatial structure of DNA and the 

development of modern sequencing methods [1, 2]. 

It is quite interesting that a large number of scien-

tific papers have documented the results of studies 

of the mutagenic potential of aromatic amines [69, 

70–72]. The results of the studies published in pa-

pers [73–76] show a clear connection between the 

belonging of chemical compounds to this class 

(aromatic amines) and their expressed mutagenic 

activity. Aromatic amines are by-products of to-

bacco combustion that pose a potential risk to hu-

man health and remain the most common cause of 

lung cancer deaths worldwide [15]. In addition, 

aromatic amines are among the main environ-

mental pollutants, however they can be used as ba-

sic components in the production of cosmetics, 

dyes, plastics, food and pesticides [16, 40, 77]. The 

best-known and most scientifically studied aro-

matic amines are 2-aminofluorene and its acety-

lated derivative 2-acetylaminofluorene, which were 

used as insecticides until their carcinogenicity was 

proven [78]. Aminofluorenes are transformed into 

carcinogenic esters and sulfate alkylating agents 

with the participation of the cytochrome P450-

dependent monooxygenase system, which can at-

tack the 8th position of the guanine carbon at the 
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level of the DNA molecule [79]. If the resulting 

DNA adducts are not removed by nucleotide exci-

sion repair, this can lead to heterocyclic base sub-

stitutions and a subsequent reading frame shift [80]. 

In scientific works [81, 82], the peculiarities of the 

biological transformation of aromatic amines with 

the participation of prokaryotic organisms were in-

vestigated, which creates preconditions for main-

taining a genetically safe environment.  

Aromatic amines are widely used as interme-

diates in the synthesis of active ingredients in me-

dicinal products. In this situation, the mutagenicity 

of impurities poses serious obstacles to genetic 

safety and to the prevention of the release of 

pharmaceutical products with potential genotoxic 

properties [83, 84]. For assessing the genetic effects 

of the basic component of a certain pharmaceutical 

drug, it is also necessary to take into account the 

fact that aromatic amines can be synthesised as 

metabolites by hydrolysis of active or auxiliary 

components of the drug containing amide bonds in 

their structure [85]. 

Polycyclic aromatic hydrocarbons (PAHs) are 

widely distributed in the environment and are 

among the main air pollutants [86]. As early as in 

1983, the US Environmental Protection Agency 

reported sixteen polycyclic aromatic hydrocarbons 

as major environmental pollutants [86]. Polycyclic 

aromatic hydrocarbons are persistent polutants with 

toxicity, mutagenicity, carcinogenicity, and immu-

notoxicity properties for both prokaryotic and eu-

karyotic organisms [87]. The carcinogenicity of this 

class of chemical compounds, as well as of some 

aromatic amines, is associated with the enzymatic 

activity of the cytochrome P450-dependent mono-

oxygenase system [88, 89]. The metabolism of 

polycyclic aromatic hydrocarbons (e.g. quinones) 

occurs through the synthesis of reactive intermedi-

ates that are not polar enough for excretion and 

may cause damage to cell membranes, proteins and 

DNA [40, 87, 90].  

Natural toxins form a class of genotoxic and 

carcinogenic chemicals utilised by microorganisms 

or fungi in defence reactions [91]. Filamentous 

fungi belonging to the genus Aspergillus are the 

main cause of aflatoxin contamination of cereals 

and oilseeds, as well as dairy products [92]. Asper-
gillus flavus, which mainly synthesises B-afflatoxins 

B1 and B2, and Aspergillus parasiticus, which pro-

duces G-afflatoxins G1 and G2, are the aflatoxin 

producers [93, 94]. Aflatoxin B1, one of the most 

important factors in the incidence of hepatocellular 

carcinoma worldwide, has been classified as a car-

cinogen by the Food and Agriculture Organization 

of the United Nations [95]. Biotransformation of 

aflatoxin B1 involves the cytochrome P450-depen-

dent monooxygenase system with the formation of 

a toxic and carcinogenic product, aflatoxin B1-8,9-

epoxide, which can interact with the nitrogen in 

the 7th position of guanine with the formation of a 

DNA adduct [16, 40, 95]. Such a newly synthe-

sized complex weakens the glycosyl bond and leads 

to DNA depurinization [40]. Another pathway of 

chemical transformation of aflatoxin B1 has also 

been studied, this pathway involves additional hy-

drolysis of the DNA adduct with the formation of 

aflatoxin-B1-formamidopyrimidine, which blocks 

DNA replication and has a high potential for in-

ducing transversion-type mutations [40, 95].  

In the context of global industrialisation and 

urbanisation, there is a significant increase in the 

number of chemicals that can be potential envi-

ronmental pollutants. This trend creates new chal-

lenges for humanity and stimulates the scientific 

community to develop, streamline and improve the 

regulatory framework necessary to accompany the 

procedures at the stage of assessment, registration, 

control, permitting and prohibiting the use of 

chemicals used in various spheres of human life. 

International organisations and regulatory bodies 

have been registered all over the world dedicated 

to ensuring environmental protection and human 

health. Standards for the genetic evaluation of 

chemicals are usually achieved by taking into ac-

count the recommendations of the Organisation 

for Economic Co-operation and Development 

(OECD) [96, 97] and the international document 

ICH M7 "Assessment and control of DNA reac-

tive (mutagenic) impurities in pharmaceuticals to 

limit potential carcinogenic risk - Scientific guide-

line" [87, 98, 99]. Considering the large number of 

methods of genetic assessment of environmental 

factors, it is necessary to draw conclusions about 

the genotoxicity of a chemical substance based on 

scientifically sound procedures, methods and inter-

national regulatory documents and recommenda-

tions adopted by the scientific community.  

At the end of 2022, the European Chemicals 

Agency published information on approximately 

800,000 chemicals for which no complete informa-

tion on direct or indirect impact on the human ge-

netic apparatus is available [61]. Despite the fact 

that maximum attention is paid to ensuring genetic 

and environmental safety worldwide, one of the 

main challenges of genetic toxicology is to solve the 

problem of obtaining genetic assessment for all che-

mical compounds, information on which is stored 

in modern databases such as ChemSpyder [100], 
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Table 2: Standard test system battery for genotoxicity assessment 

Test no. (OECD) Name of the test system Features of the test Links 

TG471 Bacterial Reverse Mutation Test In vitro [115] 

TG473 Mammalian cell chromosome aberration test  In vitro [116] 

TG474 Mammalian erythrocyte micronucleus test In vivo [117] 

TG475 Mammalian bone marrow chromosomal aberration test In vivo [118] 

TG476 
In vitro mammalian cell gene mutation tests using 

the Hprt and xprt genes 
In vivo [119] 

TG478 Dominant lethal test In vivo [120] 

TG483 Mammalian spermatogonial chromosomal aberration test In vivo [121] 

TG485 Mouse Heritable Translocation Assay In vivo [122] 

TG486 
Unscheduled DNA Synthesis (UDS) Test 

with Mammalian Liver Cells in vivo  
In vivo [123] 

TG487 In Vitro Mammalian Cell Micronucleus Test In vitro [124] 

TG48 In Vivo Mammalian Alkaline Comet Assay In vitro [125] 

 

PubChem [101], SciFinder [102], and others. The 

need to develop new approaches and methods for 

genetic assessment of environmental factors is also 

discussed in scientific papers [60, 103–106]. In the 

present review, with the aim of finding possible 

ways for improving the basic methods and search-

ing for new approaches to genotoxicity assessment, 

we will consider classical basic and modern meth-

ods for assessing the genetic safety of environ-

mental factors for which there are no OECD rec-

ommendations for genotoxicity testing. 

2. Genotoxicity Assessment Methods  

A variety of in vitro and in vivo methods have 

been developed to test chemicals for potential ge-

netic activity using eukaryotic and prokaryotic or-

ganisms. According to the OECD Guidelines for 

the Testing of Chemicals [107], there are more 

than 150 methods accepted by the scientific com-

munity and regulatory authorities that provide in-

formation on toxic and genotoxic potential. The 

OECD provides recommendations for 20 classical 

methods [108], most of them developed more than 

30 years ago [35, 109] and currently do not allow 

for a fully adequate and objective answer to the 

question of whether a chemical is potentially ge-

netically active. The OECD Guidelines for the 

Testing of Chemicals include 9 in vitro experimen-

tal models with laboratory animals and 11 test sys-

tems using prokaryotic and unicellular eukaryotic 

organisms and mammalian cell lines [107, 109]. In 

order to obtain a reliable assessment of chemicals 

in terms of their potential genotoxic properties, it 

is necessary to take into account the three main 

outcomes of DNA damage, which are primarily as-

sociated with the occurrence of gene mutations, 

chromosomal aberrations and aneuploidy [110]. 

To date, there is no short-term test system which 

would allow taking into account such damage to 

hereditary information simultaneously [111]. There-

fore, a classical battery of short-term tests is used 

to comprehensively assess the ability of chemicals 

to cause damage to genetic material, given the 

three endpoints of damage [111–113]. Chemicals 

can be assessed as not showing genotoxic potential 

if a negative result is obtained for all DNA damage 

endpoints using in vitro methods [114]. Despite the 

fact that to date more than a hundred methods for 

assessing genotoxicity have been developed, prefe-

rence is given to test systems where the standardized 

methodology is accepted by the scientific community 

and approved by the relevant guidelines of interna-

tional organizations (for example, OECD, ECHA, 

UK-EMS, US-FDA, EFSA, etc.) [107, 109]. Table 2 

contains information about the classical battery 

of short-term test systems recommended by the 

OECD as basic methods for genotoxicity assess-

ment [107, 111, 112]. 

The authors of the scientific work [97] focus 

on three main methods related to the standard sys-

tem battery of short-term tests represented by the 

Bacterial Reverse Mutation Test (TG471), In Vitro 
Mammalian Chromosomal Aberration Test (TG473) 

and In Vivo Mammalian Erythrocyte Micronucleus 

Test (TG474).  

By April 2014, the standard battery of test 

systems for genotoxicity assessment additionally 

took into account tests TG472, TG477, TG479, 

TG480, TG481, TG482 and TG484, which, by de-



10                                                                                                                      Innov Biosyst Bioeng, 2024, vol. 8, no. 2    

  

 

 

cision of the OECD Council, were removed from 

the list of recommended tests [108]. The European 

Food Safety Association (EFSA), based on a com-

prehensive assessment of the results of Unsched-

uled DNA Synthesis (UDS) Test with Mammalian 

Liver Cells in vivo (TG486), no longer recommends 

this method for assessing the genetic safety of en-

vironmental factors [110]. However, the OECD 

recommendation for the TG486 test system re-

mains to date [107].  

In 2012, the International Council for Har-

monisation of Technical Requirements for Phar-

maceuticals for Human Use (ICH), approved the 

guidance on S2(R1) Genotoxicity Testing and Data 

Interpretation for Pharmaceuticals intended for 

Human Use (ICH S2 (R1)), according to which 

two theoretically based application plans were pre-

sented for in vitro and in vivo batteries of standard 

test systems for genotoxicity determination [126]. 

The first approach [111, 112, 126], which was pro-

posed for testing, takes into account the use of the 

following short-term tests: 1) Ames Salmonella-

microsome assay (TG471) (bacterial reverse mu-

tation test); 2) In vitro mammalian chromosomal 

aberration in bone marrow cells test (TG473); 

3) In vivo test for detection of mammalian peripheral 

blood erythrocyte micronuclei (TG473). The second 

approach [111, 112, 126] is based on the use of such 

test systems as: 1) Bacterial Reverse Mutation Test 

(TG471); 2) In vivo test for detection of mamma-

lian erythrocyte micronuclei (TG473); 3) Unsche-

duled DNA Synthesis (UDS) Test (TG486) or 

In Vivo Mammalian Alkaline Comet Assay (TG489). 

The most common methods for assessing genotoxic 

potential include Bacterial Reverse Mutation Test 

(TG471), In Vitro Mammalian Cell Micronucleus 

Test (TG487) and In Vitro Mammalian Chromo-

somal Aberration Test (TG473) [68].  

2.1. Bacterial reverse mutation test system 
(TG 471) 

The basic method for assessing the genetic 

safety of environmental factors is the reverse muta-

tion test developed in the 1970s by the American 

molecular biologist Bruce Ames [127]. The bacte-

rial reverse mutation test is a fast, inexpensive, and 

easy-to-perform method [110, 111]. The Ames test 

is used as the main in vitro method [128] for as-

sessing mutagenic potential and is performed using 

bacterial strains Salmonella typhimurium, which are 

histidine auxotrophs [113, 127, 129–131]. Mutations 

in hisG and hisD genes at the level of histidine ope-

ron of Salmonella typhimurium strains are stimula-

ting to inhibit the growth processes of tester strains 

on the nutrient medium free of histidine [68, 111]. 

Mutagenic chemicals are responsible for the tran-

sition from histidine auxotrophicity to prototro-

phicity, which occurs by inducing mutations that 

include replacing pairs of nucleotide bases and the 

reading frame shift [68, 110, 111, 127]. To assess 

the mutagenicity of the test chemicals, the number 

of revertant colonies cultured in the petri dish was 

measured compared to the control. The resulting 

estimation is based on the selection of revertants, 

not the frequency of mutations induced by envi-

ronmental factors [110]. This approach is a classic 

semi-quantitative Ames method, which is used in 

almost all laboratories worldwide to test chemical 

compounds for their potential genetic activity. 

There is a modification of the Ames method, it 

is a quantitative method recording directly the mu-

tation frequency that occur under the action of 

mutagens, however, it is not very popular among 

researchers due both to its complexity, and the 

problem of reproducibility of the experiment in dif-

ferent laboratories. Standard test strains of Salmo-
nella typhimurium, in addition to point mutations 

at the level of histidine operons, may contain addi-

tional mutations causing increased sensitivity of the 

test organism to the action of chemical com-

pounds, which improves the predictive ability of 

the test system [132]. For example, the structure of 

the outer lipopolysaccharide layer is disrupted by rfa 
mutation, which increases the cell wall permeabi-

lity to potential environmental pollutants [110, 111]. 

In addition, increasing the sensitivity of the test 

system is achieved through the use of Salmonella 
typhimurium mutant strains where the gene uvrB is 

missing, the protein product of which is the main 

component of the multi-enzyme excisional repair 

system of nucleotides in bacteria [127, 133]. In or-

der to increase the prognostic capabilities of the 

Ames test, the need for the introduction of the 

plasmid pKM101 which determines the resistance 

of Salmonella typhimurium strains to antibiotics such 

as ampicillin and carbenicillin, was proved [127]. 

In addition, resistance factor (or R-factor) carries 

information about the genes mucA and mucB, 

which encode DNA polymerase V participating in 

translesion DNA synthesis [113]. The test system's 

sensitivity to xenobiotics with genotoxicity proper-

ties can be increased by DNA synthesis through 

damaged areas [113]. Salmonella typhimurium stan-

dard strains such as TA97, TA98, TA100, and 

TA102 contain the plasmid pKM101 [113, 132]. In 

Salmonella typhimurium strains ТА1538, ТА1535, 

and ТА1537 the resistance factor is absent. Table 3 

provides information on the genotypes of the main 
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Table 3: Genotypes of mutant of Salmonella typhimurium test strains 

Strains 
Salmonella 
typhimurium 

Reverse mutation type 
Mutations at the 
level of histidine 

operon 

Additional mutations Presence of 
the plasmid 
pKM101 

Links 
rfa uvr 

ТА98 Reading frame shift D3052    [134] 

ТА1538 Reading frame shift D3052    [135] 

ТА100 Base substitution G46    [136] 

ТА1535 Base substitution G46    [137] 

ТА1537 Reading frame shift C3076    [138] 

ТА102 Transitions/Transversions G428    [139] 

 

mutant Salmonella typhimurium strains, which will 

be used to assess the genetic safety of environ-

mental factors. 

In accordance with the recommendations of 

the Organization for Economic Cooperation and 

Development, five strains of Salmonella typhi-
murium (TA1535, TA1537, TA98, TA100, TA102) 

are used to assess mutagenic potential, the use of 

which proves their predictive value in terms of 

identification of genotoxic substances [115]. Sub-

stitutions occurring at the level of heterocyclic base 

pairs G and C can be detected using strains TA100 

and TA1535 [115, 132, 136]. Strains TA98 and 

TA1537 allow us to identify mutations by the type 

of reading frame shift [115, 132, 134, 137]. In [138], 

the Salmonella typhimurium TA102 test system was 

investigated, which allows us to obtain a genotoxic 

assessment of mutagens interacting with nucleo-

tides A or C [115, 132, 138]. Quite interesting is 

the fact that the detection of some mutagens is 

possible only with the use of the TA102 test strain, 

while other strains recommended for OECD test-

ing give a negative result [138]. 

The bacterial reverse mutation test uses the 

cells of prokaryotic organisms as a test system that 

differ significantly from mammalian cells, espe-

cially in such indicators as uptake and metabolism. 

Quite significant differences are also observed in 

terms of molecular mechanisms of repair. In order to 

decompensate the difference in the metabolic cha-

racteristics of eukaryotic and prokaryotic organisms, 

it was proposed to use an exogenous source of me-

tabolic activation for mutagenicity testing [115, 139]. 

The most common system used for metabolic acti-

vation is S9 fraction obtained from liver hepatocyte 

cells of laboratory animals [114, 140]. Although the 

metabolic activation system does not allow us to 

fully consider the features of metabolism of the 

above eukaryotic organisms, including humans, the 

prognostic potential for such a test system increases 

and the range of chemical compounds that mani-

fest their activity is significantly expanded when 

using the metabolic activation system, especially in 

the case of studying potential carcinogens that can 

be intermediate products of reactions involving the 

monooxygenase P450 enzyme system [132]. The 

main obstacle to obtaining reliable results of in vitro 
mutagenicity testing using the Ames test is highly 

specific for metabolic activation, which depends on 

a person's age, gender, genotype, etc. [141]. The 

use of a HepaRG cell model for mutagenicity test-

ing which demonstrates significant activity of P450 

monooxygenase enzymes partially solved the prob-

lem of insufficient consideration of the basic path-

ways of xenobiotic biotransformation in the human 

body with in vitro test systems [68, 142]. 

2.2. In Vitro mammalian interphase cell micro-
nucleus test ayatem (TG487) 

In vitro micronucleus test system has been used 

to assess cytogenetic damage to inherited material 

over the past few decades [143, 144] and is one of 

the main methods related to the short-term battery 

of genotoxicity tests [107, 111, 112]. The micro-

nucleus identification method is used to assess the 

aneugenic and clastogenic potential of the studied 

chemical based on its ability to induce micronuclei 

in rodent bone marrow cells or peripheral blood 

lymphocytes [143, 144]. Micronuclei are identified 

as fragments of DNA with a nuclear membrane 

that are not connected to the spindle apparatus 

and are not subject to migration during cell divi-

sion [145]. Micronuclei represent lesions occuring 

during mitotic division of indicator cells that are 

inherited and passed on to daughter cells, whereas 

chromosomal aberrations in cells at the metaphase 

stage of mitosis are not inherited [124]. Whole 

chromosomes or fragments of them that cannot be 

included in the main nucleus after the division can 

be identified in micronuclei [146]. The frequency 
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with which micronuclei in interphase cells will be 

identified is used to quantify DNA damage [111, 

146]. In order to neutralize the influence of the 

formed separated abnormal genetic microstructures 

arising under the influence of genotoxic substances, 

the count of micronuclei occurs after one mitotic 

division. This procedure can be achieved by block-

ing the division of indicator cells with cytocha-

lazine [147]. In [148, 149], an optimized approach 

for detecting micronuclei without using mitotic 

division blockers is proposed, but in the case of 

studying genotoxic substances that slowly induce 

micronuclei due to their effect on cytostasis, this 

approach often leads to erroneous results. Scanning 

microscopy and flow cytometry are currently used 

to automate micronucleus analysis and improve tes-

ting performance [150]. In [146], the authors pro-

pose to use a deep learning model based on a con-

volutional neural network to quantify genotoxicity 

and cytotoxicity based on a micronucleus test. The 

trend of active application of machine learning al-

gorithms and the introduction of effective methods 

for assessing genotoxicity in silico can be traced in 

scientific works [85, 105, 151] and deserves special 

attention from scientists. 

2.3. In vitro test system for mammalian chro-
mosomal aberration (TG473) 

The impact of most of the environmental 

contaminants studied on the genetic apparatus of 

eukaryotic cells often manifests itself as chromoso-

mal damage [152]. Double-stranded DNA breaks, 

which are the main cause of structural chromoso-

mal aberrations, can be induced by direct or indi-

rect exposure to genotoxic substances due to DNA 

replication or repair errors [153]. In vitro chromo-

somal aberration testing enables us to identify 

chemicals that influence the hereditary information 

of cultured mammalian cells by rearranging chro-

mosomes [108, 154]. The short-term test system for 

detecting chromosomal aberrations in mammalian 

bone marrow cells is recommended by the OECD 

as the basic method and belongs to the standard 

battery of non-genotoxic tests [97, 107, 111, 112]. 

Among chromosomal rearrangements, chromosomal 

and chromatid aberrations are distinguished [154]. 

The first ones are associated with changes in the 

number and structure of chromosomes. Chroma-

tid-type aberrations cover only one chromatid of 

the eukaryotic chromosome [111]. Despite the fact 

that aneugens are inducers of changes in the ploidy 

of eukaryotic cell nuclei, the detection of poly-

ploidy in chromosomal aberrations tests does not 

allow us to objectively assess the aneugenic poten-

tial for such chemicals. Aneuploidy established by 

the test system may show the cytotoxic potential of 

a chemical having a destabilizing effect onto the 

cell cycle regulation system [155]. When studying 

the influence of environmental factors on changes 

in nuclear ploidy, the OECD recommends using 

In Vitro mammalian cell micronucleus test [124].  

Various cell lines of eukaryotic organisms, in-

cluding humans, are used for testing. To study 

chemically-induced chromosomal mutations, scien-

tists in the historical context focused heavily on 

Chinese hamster lung and ovary cell lines [156]. 

However, studies have shown that such cell lines 

are genetically unstable and are characterized by a 

high rate of spontaneous aberrations, which can 

negatively affect the final test result [157]. Chro-

mosomal aberrations caused by physical and che-

mical factors can currently be detected with a 

modern method using primary diploid cultures of 

lymphocytes from peripheral human blood, which 

are stimulated to divide by the mitogen phytohe-

magglutinin [158]. In [159], the effect of ionizing 

radiation using human peripheral blood lymphocy-

tes is studied. Chinese hamster fibroblast cell lines 

are quite popular in various laboratories [160]. 

Studies of chromosomal aberrations in peripheral 

blood lymphocytes have been used for decades to 

monitor healthy individuals exposed to chemicals 

that are potential mutagens or carcinogens [161]. 

Obtaining an objective assessment of genotoxic 

effects by in vitro chromosomal aberration detec-

tion requires simulating mammalian metabolism. 

Such a process is achieved through the addition of 

a mixture of S9 enzymes and allows the identifica-

tion of environmental factors of indirect effect on 

the hereditary material [141]. Damage to heredi-

tary material cannot be caused by the interaction 

of the studied environmental factor with the DNA 

molecule due to the incomplete modeling of condi-

tions in vivo by the exogenous metabolic activation 

system. In such a situation, False positive results 

can be caused by pH changes [162] and interacti-

ons with environmental chemical compounds [163], 

which result in the synthesis of intermediates that 

are not taken into account in testing. The method 

of detecting chromosomal aberrations in mammal-

ian cells involves treating tissue culture with the 

test substance both in the absence and presence of 

enzymes of the metabolic activation system, since 

interaction with genetic material often occurs after 

metabolic activation [111]. The culture of mam-

malian cell line cultures or primary human cell 

cultures is done before adding the test substance in 

an in vitro test. Treatment of cells with DNA-dama-
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ging agents can lead to the appearance of non-

renewable damage in both strands of DNA, which 

can result in the rupture of chromosomes. To esti-

mate the clastogenic effect, the percentage of cells 

with structural aberrations is the primary parame-

ter. Microscopically examining metaphase pre-

parations in which the genetic material is in the 

most condensed state with the clearest structure is 

used to perform a detailed analysis of induced 

chromosomal lesions [116, 164]. Cell cycle arrest 

at the metaphase stage is achieved by using mitosis 

blockers [164]. The mechanisms of action of such 

popular blockers as colcemide and colchicine have 

been studied in scientific papers [165, 166].  

2.4. In vivo mammalian erythrocyte micronu-
cleus test system (TG474) 

The process of establishing metabolic path-

ways and assessing xenobiotic toxicity is a techni-

cally complex and time-consuming process, it re-

quires the use of both in vitro cell systems and 

in vivo animal models before conducting human 

clinical trials [142]. While animal tests are still the 

primary standard method for assessing the genetic 

safety of xenobiotics, scientists are increasingly fo-

cusing on the concept of '3R', guided by principles 

designed to reduce, improve, and replace animal 

models when testing for genotoxicity [167, 168]. In 

such a situation, the in vivo genotoxic potential is 

assessed further only after a positive result has been 

obtained with the in vitro basic test systems [112].  

In vivo micronucleus analysis using rodent bone 

marrow hematopoietic cells or peripheral blood 

cells is widely used to assess the clastogenicity and 

aneugenicity of environmental factors or individual 

chemicals. The micronucleus identification method, 

which belongs to the standard battery of short-term 

genotoxicity tests [97, 107, 111, 112], is one of the 

most popular and reliable and allows us to obtain 

a more or less objective assessment of the induc-

tion of genotoxic effects by environmental factors 

in the form of chromosomal aberrations and da-

mage to the mitotic apparatus of mammalian ery-

throblasts [117, 169]. Micronuclei test can be used 

to identify substances that cause chromosomal ab-

errations and xenobiotics that cause aneuploidy be-

cause they are formed from whole chromosomes 

and fragments of chromosomes that fall into the 

nuclei of daughter cells during mitosis [111]. The 

in vivo test system for detecting rodent erythrocyte 

micronuclei ranks first among the short-term test 

systems recommended by OECD [117, 170]. Tak-

ing into consideration factors of in vivo metabo-

lism, pharmacokinetics, and DNA repair processes 

can be achieved through micronucleus analysis, but 

these factors may differ for different types of or-

ganisms, tissues, and investigational endpoints of 

DNA damage [117].  

The number of immature polychromatic ery-

throcytes found in the bone marrow or peripheral 

blood of experimental animals with micronuclei 

induced by environmental factors can be counted 

during an in vivo micronucleus test [111]. Compar-

ing the frequency of occurrence of micronuclei in 

the control experiment gives an estimate of pos-

sible genotoxic effects on the human body [171]. 

Differentiation of bone marrow erythroblast into an 

immature erythrocyte (reticulocyte) is associated 

with enucleation of the basic nucleus [111, 117]. 

The use of such cells in testing for genotoxicity has 

certain advantages that greatly simplify the com-

plex process of identifying micronuclei and visual-

izing them [111, 117]. With the development of in-

formation technologies, automated systems have 

been introduced to identify and quantify micronu-

clei, which minimizes the influence of the human 

factor when conducting manual calculations on 

images obtained using light microscopy [172, 117]. 

Automation and optimization of research using 

microkernel in vivo the test is achieved on the basis 

of flow [173] and scanning [174] cytoflourimetry 

and image analysis systems [175, 176]. 

2.5. In vivo comet assay (TG489) 

In 2016, the Organization for Economic Co-

operation and Development published recommen-

dations for genotoxicity testing using in vivo mam-

malian alkaline comet assay [126]. Two application 

plans were proposed by the International Council 

for Harmonisation of Technical Requirements for 

Pharmaceuticals for Human Use, which considers 

the classic standard battery of short-term tests for 

determination of the genotoxic potential of envi-

ronmental factors [177]. According to the first plan, 

two in vitro methods and one in vivo method are 

used for testing. To assess the genetic effects that 

can be induced by factors of physical and chemical 

and biological nature according to the second plan, 

two in vivo methods and one in vitro method are 

used [177, 178]. Among in vitro methhids, bacterial 

reverse mutation test is mandatory for both the 

first and second testing plans [177, 178]. For in vivo 
genotoxicity tests, a micronucleus test with bone 

marrow erythrocytes [175] and comet assay with 

hepatocytes [179, 180] are used.  

Over the past few decades, comet assay has 

been the most widely used experimental method for 

assessing DNA damage in eukaryotic cells [180, 181]. 
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Among the basic in vivo methods for detecting 

genotoxicity related to the standard battery of test 

systems, comet and micronucleus assays are quite 

popular, mainly because of their simplicity, sensi-

tivity and versatility [35]. According to scientific 

papers [36, 177, 182, 183], the predictive potential 

of genotoxicity assessment is improved by combin-

ing two methods. In vivo DNA comet assay pro-

vides assessment of genetic effects using in various 

fields of science, such as molecular epidemiology, 

pharmacology, genetic toxicology, oncology, and 

also used in basic research to study the mecha-

nisms of DNA damage and repair [184]. In addi-

tion, in vivo DNA comet assay is also used to as-

sess the level of genetic damage in the develop-

ment of human diseases such as essential hyperten-

sion [185], chronic kidney disease [186] and type 2 

diabetes [187].  

In vivo DNA comet assay is based on the gel 

electrophoresis method, which allows assessing da-

mage to the hereditary material of eukaryotic cells, 

taking into account the level of migration activity 

of chromosomal DNA in the agarose gel. At the 

same time, negatively charged fragments of single-

stranded DNA are moved from the cathode to the 

anode, which resembles the shape of a comet [125]. 

During electrophoresis, DNA fragments containing 

breaks lose their helical structure, which affects gel 

electrophoretic mobility [125, 188]. In an alkaline 

environment, at the value of  pH  13 comet DNA 

assay makes it possible to detect single- and dou-

ble-stranded breaks that can be caused by geno-

toxic environmental factors [125]. The size, shape, 

and amount of DNA within a "comet" is crucial 

for determining the level of DNA damage [125, 

184, 188, 189]. Increase in testing performance 

using the DNA-comet assay is achieved through 

the introduction of automated analytical tools, 

among which OpenComet [190], HiComet [191], 

CometChip [192], CometAnalyzer [193] are quite 

popular, which allows minimizing human influence 

at the decision-making stage to assess the genotoxic 

potential of a certain environmental factor [194].  

3. Modern methods for assessing the geno-
toxicity of environmental factors 

Over the past 50 years, various in vivo and 

in vitro methods have been developed for obtaining 

an objective assessment of the genetic safety of 

environmental factors, some of them have been 

adopted by the scientific community, followed by 

approval by relevant guidelines of international or-

ganizations (such as OECD, ECHA, UK-EMS, 

US-FDA, EFSA, etc.) [107, 109]. To date in vivo 
and in vitro standardized methods are the basis for 

genetic testing in the European Union [109]. The 

scientific work [195] presents a classical testing plan, 

according to which, an assessment with the use of 

a basic battery of test systems is performed for the 

detection of genetic effects that can be induced by 

chemicals used in cosmetic products, genotoxic 

environmental agents, biocides and basic ingredi-

ents of pharmaceutical preparations. An assessment 

of genetic safety for humans can be obtained on 

the basis of the step-by-step principle, which at the 

initial stage of testing takes into consideration the 

use of a basic battery of in vitro tests, according to 

which, in some cases, in vivo testing is carried out. 

An exception to the rule is testing for genotoxicity 

of active substances of cosmetic products, for which 

in vivo tests are prohibited in EU countries [167, 

195, 196]. According to [107, 111–113], most of 

the methods included in standard battery test sys-

tems were developed more than 30 years ago. In 

addition, according to papers [197, 198], in vitro 

experiments conducted with prokaryotic and euka-

ryotic indicator cells show a fairly large number of 

false-positive results, which indicates the need for 

additional research to improve standard methods 

for assessing genetic safety, as they have significant 

limitations. For example, for the Ames test, the 

main problem is the discrepancy observed when 

comparing the molecular organisation of hereditary 

information and repair systems of eukaryotic and 

prokaryotic organisms. The main problem of popu-

lar in vivo DNA comet assay is the variability of 

electrophoregrams, which is primarily due to dif-

ferent conditions of indicator cell cultivation [35]. 

The search for effective new and optimization of 

classical methods for assessing genotoxicity is ex-

tremely important. A significant paradigm shift in 

genotoxicity testing was observed after Sanger dis-

covered a method for determining the nucleotide 

sequence of DNA in 1977, followed by the active 

development of bioinformatics. The need to revise 

and transform the basic methods for assessing the 

genetic safety of environmental factors, taking into 

account the achievements of bioinformatics, sys-

tems biology and computational toxicology, is tra-

ced in scientific papers [199, 200]. In addition, the 

active integration of machine learning algorithms 

into genetic toxicology deserves special attention, 

which gives hope for solving the main problem of 

genetic toxicology associated with the lack of in-

formation about the genotoxic potential of a large 

number of chemical compounds existing in the en-

vironment [201]. It should be noted that to date, 
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modern methods and approaches for genetic testing 

have been developed, they have a sufficiently large 

percentage of sensitivity and specificity, but no 

OECD recommendations were issued for them [109]. 

The increase in prognostic reliability (taking into 

account the sensitivity and specificity of the me-

thod) and the performance of modern test systems 

is achieved through the search for new molecular 

pathways for the genotoxic effects of environmental 

factors [195, 199], the development of new indica-

tor cells and the improvement procedures for their 

cultivation [109, 111].  

One of the significant factors adversely affect-

ing the in vitro specificity of standard methods be-

longing to the battery of test systems is the use of 

metabolically incompetent prokaryotic and eukary-

otic cells. Metabolic activation by S9 fraction can 

partially compensate for the absence of phase I en-

zymes, while phase II metabolic enzymes catalys-

ing the formation of DNA-reactive metabolites and 

participating in their biotransformation are not 

considered [115, 138, 141]. GGenotoxic metabo-

lites may be formed after one or more stages of 

phase I and/or phase II metabolism. Therefore, 

in vitro genotoxicity testing requires cell models 

that are metabolically competent. To date, there 

has been some progress in solving the problem of 

using metabolically incompetent indicator eukary-

otic cells for genotoxicity investigation with the use 

of in vitro classical methods. Cellular lines of human 

hepatocellular carcinomas such as HepaRG [202] 

and HepG2 [203] are used for genotoxicity predic-

tion. HepG2 cell line shows markedly low meta-

bolic activity, while the HepRG cell line with the 

best metabolic potential in phases I and II is con-

sidered a cell line for which there is no need for 

metabolic activation [203]. In the study of the 

genotoxic effect of pyrolizidine alkaloids, the hepa-

toma cell lines Huh6 and HepG2 are quite effec-

tive [204]. Using mutant Tk6 cell lines represents 

an approach in vitro, which allows for a more 

comprehensive genotoxicity analysis in comparison 

with traditional classical methods, reducing the 

number of false results. The scientific work [205] 

highlights the issues of assessing the genotoxic po-

tential using the human B-Lymphoblast cell line 

TK6, taking into account two endpoints of DNA 

damage, which demonstrates the obvious advan-

tages of this approach in comparison with in vitro 
using standard battery test systems. Some mutant 

cell lines TK6 show a special phenotypic behavior, 

showing either increased sensitivity or tolerance to 

a certain mutagen, which makes it possible to use 

this approach not only for assessing genetic effects, 

but also in conducting fundamental research on 

DNA repair mechanisms [111]. 

One of the most dangerous DNA damage is 

double-stranded breaks, which can be initiated by 

exogenous environmental factors of a physical, 

chemical or biological nature. Repair of such dam-

aged DNA regions can cause oncogenic rearrange-

ments [6]. In response to double-stranded breaks, 

phosphorylation enzymes of serine-threonine ATM, 

ATR, and DNA-PKc kinases are activated [206, 

207]. In the scientific work [208], after a detailed 

proteomic analysis, about 900 phosphorylation sites 

were identified, covering more than 700 proteins. 

An important substrate of ATM, ATR, and DNA-

PKc is H2AX histone proteins, which are con-

verted to yH2AX after phosphorylation of serine at 

position 139 [209]. Quite interesting and not stan-

dard, as for evaluating the final genetic effects is 

the approach that provides for assessment of geno-

toxic effects by determining the degree of manifes-

tation of H2AX phosphorylation processes in re-

sponse to exposure to genotoxic agents. This pro-

cedure is performed with the use of such methods 

as flow cytometry, immuno-fluorescence micro-

scopy, and Western Blot immunoassay [210, 211] 

the main cell lines of this method are human B-

lymphoblasts HepG2 and TK6 [207].  

ToxTracker is a promising tool for assessing 

genotoxic effects, taking into account non-standard 

points of DNA damage. "ToxTracker" testing sys-

tem based on mammalian stem cells makes it pos-

sible to detect the activation of specific cellular 

signaling pathways that make it possible to carry 

out genotoxic profiling of environmental factors, 

taking into account their dosed effect. ToxTracker 

uses a panel containing six green fluorescent re-

porter proteins, one for each cell line, to evaluate 

the ability of genotoxic agents to react with genetic 

material. The result of this interaction may be 

blocking of DNA replication, induction of oxida-

tive stress, activation of reactions mediated by de-

naturation of proteins or general reactions of cellu-

lar stress, dependent on the transcription factor R5, 

which serves as a suppressor of tumor growth [212, 

213]. The ToxTracker system allows determining 

the genotoxic potential of the test compound in 

one test, taking into account various endpoints of 

DNA damage [213]. 

 The test system for assessing the genotoxicity 

of environmental factors based on the detection of 

mutations of the Pig-a gene deserves special atten-

tion. Despite the fact that in vivo Pig-A assay de-

monstrated its prospects for assessing the end point 

of DNA damage in the form of mutations, back 
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in 1999 [214], the OECD recommendation was re-

ceived by the methodology only in mid-2022 [215]. 

The Pig-a gene encodes the catalytic subunit of N-

acetylglucosamine transferase involved in the early 

synthesis of glycosylphosphatidylinositol [216, 217], 

which binds protein markers on the surface of ho-

mopoietic cells of humans and laboratory mammals 

(for example, the product of the CD59 gene) [218]. 

Of all the genes associated with glycosylphosphati-

dylinositol, the Pig-a gene only is located on the 

X chromosome [216]. Accordingly, the phenotype 

characterized by the absence of glycosylphosphati-

dylinositol will be informative in terms of the pres-

ence of mutations at the level of the coding region 

of the Pig-a gene. In [219], when studying the 

genotoxic potential of twenty-four chemicals, it 

was experimentally proved that the Pig-a mutation 

detection test system is more sensitive when used 

as indicator cells of reticulocytes. The Pig-a test 

system with rat peripheral blood cells, in terms of 

sensitivity to mutagen detection, was significantly 

inferior to the reticulocyte system [219]. In order 

to study chemotherapy and radiation therapy sche-

mes in cancer patients, scientific papers [220, 221] 

consider the possibility of expanding the Pig-a test 

system in rodents to Pig-A using human erythro-

cytes. 

Scientific papers [222, 223] highlight the is-

sues of assessing the genotoxicity of environmental 

factors using a promising new model that uses the 

method of micronucleus analysis with fertilized 

chicken eggs and erythrocytes. The main advan-

tages of the method include the ability to assess 

genotoxic effects at the in vitro model level, taking 

into account the parameters of ADME, which are 

decisive from the point of view of the bioavailabil-

ity of the chemical compound and associated with 

its adsorption, distribution, metabolism, release 

and toxicity. Thus, in accordance with the basic 

principles of the "3R" concept [168, 169], it be-

comes possible to obtain an estimate of the geno-

toxic potential of a certain environmental factor 

without the additional use of in vivo test systems.  

In response to the exponential increase in the 

amount of genotoxic chemicals produced by hu-

manity, the scientific community is becoming more 

active in finding new approaches to assessing the 

genetic safety of environmental factors. A significant 

paradigm shift in genotoxicity testing was observed 

after the introduction of modern methods for bio-

logical sequencing. The development of modern 

next-generation sequencing (NGS) technologies, 

followed by the development of a new technology 

(ecNGS) that allows correcting errors in obtaining 

reads of DNA fragments, has demonstrated rather 

good results in detecting somatic mutations indu-

ced by environmental factors that have a rather low 

frequency of occurrence. The scientific paper [224] 

highlights the basic principles of duplex consensus 

sequencing, which allows assessing the mutational 

potential of xenobiotic effects on the human ge-

netic apparatus. The technique makes it possible to 

identify sequencing artifacts derived from a library 

preparation at the amplification stage, by compar-

ing the frequency of occurrence of nucleotides at 

a certain position of a large number of copies of 

DNA fragments. Mutations caused by environ-

mental factors, according to the consensus duplex 

sequencing method, will be present in most ampli-

fied DNA fragments [224, 225]. The advantage of 

this method is obtaining information about the 

genotoxic potential of xenobiotics with a certain 

localization of damage at the DNA level and their 

qualitative characteristics. Next-generation sequen-

cing technology based on the approach that allows 

identifying misread nucleotides provides detailed 

characterization of induced damage to genetic ma-

terial at the single nucleotide level, which provides 

completely new opportunities for solving the prob-

lem of complex assessment of mutagenic effects of 

environmental factors, taking into account the dose-

dependent genetic effect [226, 227].  

The classical scheme for assessing the geno-

toxic potential of environmental factors involves 

the use of a standard battery of in vitro and in vivo 
test systems, which have significant disadvantages in 

terms of time and cost of experimental studies [130, 

228, 229]. Furthermore, according to the basic prin-

ciples of the "3R" concept, it is necessary to reduce 

the number of studies with laboratory animals. In 

the context of an increase in the number of chemi-

cals that can exhibit genotoxic properties, scientists 

pay special attention to in silico methods that can 

act as alternative approaches for genetic assessment 

of environmental factors. The approval of the sci-

entific guideline "ICH M7 Assessment and control 

of DNA reactive (mutagenic) impurities in phar-

maceuticals to limit potential carcinogenic risk" is 

a defining event that has stimulated the implemen-

tation of modern in silico models used for obtaining 

an objective assessment of the mutagenic activity of 

environmental factors [3, 87, 105, 230] and toxic 

effects that can be induced by xenobiotics [231, 232]. 

Computational Toxicology using Qsar (Quantitative 

Structure-Activity Relationship) in silico predictive 

models in combination with machine learning al-

gorithms and apparatus of mathematical statistics 

allow us to obtain information about the mutagenic 
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potential, even in a situation where there are no 

experimental data on genotoxicity for a particular 

chemical compound [38]. The use of QSAR in silico 
models are a promising approach for solving re-

gression and binary classification problems for a set 

of chemicals with unknown genotoxic and toxic 

properties. The predictive power of such models is 

based on a set of molecular descriptors that repre-

sent the physicochemical, spatial, structural, and 

electronic properties of a particular xenobiotic under 

study [111, 233]. The need for research using QSAR 

models for Computational Toxicology problems is 

evident in recently published studies [233–236]. 

Conclusions 

In the context of global industrialisation and 

urbanisation, there is a significant increase in the 

number of xenobiotics that can be potential envi-

ronmental pollutants. For a large number of such 

chemicals, there is no genotoxic assessment, which 

creates significant obstacles to the study of com-

plex processes associated with the development of 

hereditary and oncological diseases. Today, the 

problem of effective identification and considera-

tion of various factors of genetic and carcinogenic 

danger needs to be solved. Standard toxicology 

paradigm for conducting genotoxicity testing using 

a classical battery of in vitro and in vivo test systems 

accepted by the scientific community need to up-

date and expand the list of effective and more pro-

ductive methods, especially taking into account the 

"3R" concept, which is guided by principles aimed 

at reducing, improving and replacing animal models 

in genotoxicity tests. But despite attempts around 

the world to reduce the number of tests in vivo on 

animals, unfortunately, to date, in vitro test systems 

do not provide complete information about the 

genotoxic potential, taking into account the three 

endpoints of DNA damage.  

The problems of modern toxicology can be 

solved through the integration of sciences which 

were formed and developed in the end of the 20th 

century. In this context, achievements in bioinfor-

matics and computer science deserve attention. 

Taking advantage of modern computational QSAR 

models of toxicology in combination with machine 

learning algorithms and highly productive next-

generation sequencing technologies can be consid-

ered as the main vector of development of modern 

computational toxicology. When forming a new 

concept of testing for genotoxicity, it is necessary 

to pay attention not only to solving the problem of 

binary clysification for potential genotoxic chemi-

cal compounds, but also to take into consideration 

the dose-dependent effect of xenobiotics on the 

human hereditary apparatus.  
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С.В. Кисляк, О.М. Дуган, О.І. Яловенко
 

КПІ ім. Ігоря Сікорського, Київ, Україна 

СИСТЕМИ ГЕНЕТИЧНОЇ ОЦІНКИ ВПЛИВУ ФАКТОРІВ НАВКОЛИШНЬОГО СЕРЕДОВИЩА 

Однією з важливих складових частин охорони довкілля є розроблення гігієнічних нормативів, що дають змогу захистити популя-
цію людини від несприятливого впливу забруднення природи шкідливими речовинами. Європейським і американським хіміч-
ними товариствами були представлені приблизно 800 тис. хімічних речовин, для яких на сьогодні відсутня інформація щодо  
потенційних ризиків для генетичної складової здоров’я людини та негативного впливу на довкілля. В умовах експоненційного 
збільшення хімічних сполук, що генерує людство в різних сферах виробництва, особливо актуальною є проблема ефективного 
виявлення та обліку різноманітних факторів генетичної та канцерогенної небезпеки. Оцінка потенційної генотоксичності факто-
рів навколишнього середовища є невід'ємною складовою оцінки генетичної безпеки з урахуванням як прокаріотичних, так і еу-
каріотичних організмів включно з людиною. Оцінка генетичної активності хімічних сполук є базовою вимогою для проведення їх 
всебічної токсикологічної оцінки. У представленому огляді, з точки зору генетичних та епігенетичних механізмів впливу, розгля-
нуто стандартні методи виявлення й оцінки потенціальної генетичної небезпеки факторів довікілля, що відносяться до стан-
дартної, загальноприйнятої батареї тест-систем, а також деякі сучасні експериментальні методи, що не є на сьогодні масово 
визнаними. Проведено детальний аналіз підходів щодо оцінки потенційної генетичної мутагенної активності. Показані їхні ос-
новні переваги та недоліки. З урахуванням рекомендацій Організації економічного співробітництва та розвитку щодо проведен-
ня тестування небезпечних хімічних сполук, які можуть впливати на здоров’я людини, зроблено спробу пошуку оптимальних 
підходів для вирішення задачі прогнозування генетичних ефектів та їхніх наслідків для людини. 

Ключові слова: геном; пошкодження дезоксирибонуклеїнової кислоти; генотоксичність; канцерогенез; мутагенез; тест-система 
мутацій. 


