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Background. The best swimmers have a streamlined shape that provides a flow pattern without boundary
layer separation and delays the laminar-to-turbulent transition. Their shape itself could be the reason of
small drag and high locomotion velocity. The fastest fish, e.g., sailfish, swordfish, black marlin, etc. have
another feature of their shape — a very sharp nose — rostrum, the purpose of which remains unclear. Popular
belief that the rostrum is used by these predators to pierce their prey is often disputed.

Objective. In this study, we analyze the hydrodynamic aspects of the rostrum presence and the possible use
of similar hulls for supercavitating underwater vehicles and fast penetration into water. We illustrate that
shapes with the very sharp nose could be useful for hypersonic motion in order to eliminate overheating of
the vehicle fuselage.

Methods. We use the known exact solutions of the Euler equations for the incompressible fluid to simulate
the pressure distribution on the bodies of revolution with a sharp nose. The slender body theory is used to
simulate the supercavitation and the axisymmetric air flows at high Mach numbers.

Results. Bodies of revolution with a rostrum similar to trunks of the fastest fish (sailfish, swordfish, black
marlin) and corresponding pressure ant temperature coefficients were calculated. The proposed shapes ensure
no stagnation points and no high pressures and temperatures on their noses at sub- and supersonic speeds
both in water and air. The drag on such bodies of revolution was estimated for attached, supercavitating and
supersonic flow patterns.

Conclusions. A method of calculation of axisymmetric bodies without stagnation points on their surface was
proposed. This peculiarity of the shape allows diminishing the maximum pressure and temperature on the
nose without a significant increase in drag. Such shapes with the sharp concave nose could be recommended
for high-speed attached and supercavitating bodies of revolution and for the hypersonic motion.

Keywords: water animal locomotion; bodies of revolution; load reduction; drag reduction; shape optimization;
unseparated shapes; supercavitation; hypersonic flows.

Introduction

The high swimming speed of aquatic animals
continues to draw attention to the shape of their
bodies. For example, the best swimmers have a
streamlined shape that provides a flow pattern
without boundary layer separation [1—3]. This de-
lays the laminar-to-turbulent transition and reduc-
es drag. The estimates in [4] show that the critical
Reynolds number can be quite high for special
shaped unseparated bodies of revolution, similar to
the bodies of aquatic animals. This fact allowed us
to conclude that the shape itself can provide low
drag inherent in laminar flow [4], and very simply
solve the well-known Gray paradox concerning the
dolphin swimming [5—9].

The fastest fish, e.g., sailfish Istiophorus platyp-
terus Show and Nodder, swordfish Xiphias gladius L.,
black marlin Makaira indica Cuv et Val., etc. 1,10, 11],

have another feature of their shape — a very sharp
nose — rostrum, the purpose of which remains un-
clear. Popular belief that the rostrum is used by
these predators to pierce their prey is often dis-
puted [12]. In this study, we will analyze the hy-
drodynamic aspects of the rostrum presence and
the possible use of similar hulls for supercavitating
underwater vehicles and fast penetration into water.
We will illustrate that shapes with the very sharp
nose could be useful for hypersonic motion in order
to eliminate overheating of the vehicle fuselage.

Materials and methods

Simulation of steady axisymmetric flows by
sources and sinks

We will use the standard expressions for Rey-
nolds and Mach numbers:

© The Author(s) 2020. Published by Igor Sikorsky Kyiv Polytechnic Institute.

This is an Open Access article distributed under the terms of the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/), which permits
re-use, distribution, and reproduction in any medium, provided the original work is properly cited.



170

Re, :—: > Rey =

vy’
UsL = y-Y=, (D)
aw

where L and V are the body length and volume;
v is the kinematic viscosity; U, and a, are the
flow and sound speeds at infinity. We assume the
Reynolds numbers (first two equations (1)) to be
large enough (for example, Re; > 50000) such that
the boundary-layer thickness can be neglected and
fluid outside a body and a thin layer on its surface
can be treated as ideal.

If M << 1, the potential flow of a source with
intensity Q; located at the point (§;,0) can be

expressed by the streamline function [13]:

0,(x-§;)
! L G, (2
4m/(x —&) +r? "

where x, r are cylindrical coordinates; C; is a
constant value. Then the dimensionless (based on
U,) components of the flow velocity v, =v, and

v, =V, can be calculated from (2) as follows:
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The rigid body shape R(x) can be obtained
from (2) with the use of simple equation [16]:

W, (x, R(x)) = 0. 5)

The nose of the body is located at the axis of
symmetry » = 0 and its coordinate x, can be calcu-
lated with the use of (3) as follows:

__ |2
X, = \/: (6)

The velocity at this point is equal to zero (see
(3), (4)); the pressure p and pressure coefficient

¢ = % = 1-9,2(x, R() - v, (x, R(x)) (7)

reach their maximum values (p, and p, are the

pressure and the fluid density in the ambient flow).
Thus the nose of the body has a stagnation point
with the maximum pressure.

With the use of »n sources and thinks (Q; < 0)
located at the axis of symmetry, different bodies of
revolution can be simulated by adding correspond-

ing functions¥;, v, and v,.:
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Y= v =DV, V=2 v (8)
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Similar to (5), their radii R(x) may be calcu-
lated from

3w, (x, R(x)) = 0. ©)

i=1
If the total intensity of sources if equal to the

n
total intensity of sinks (ZQ,- =0), it is possible to
i=l
obtain a closed body of revolution. Otherwise the
body is unclosed (see examples in [3, 4]). Equa-
tions (8) and (9) can be treated as an exact solu-
tion of Euler equations for inviscid incompressible
fluid.

Slender body theories

The method presented in previous Subsection
allows calculating the flow around a body of a giv-
en shape or with a given pressure distribution on
its surface, provided the use of appropriate algo-
rithms for selecting the distribution of intensities of
sources and sinks (in some cases also dipoles or
other singularities are necessary, see, e.g., [14]).
If the body of revolution is elongated (L/D >>1,
D is the maximum diameter, see Fig. 1) and moves
along the axis of symmetry, it is possible to use
slender body theories which allow calculating the
sources distribution g(x) with the use of R(x) at
different Mach numbers.

In particular, instead of (8) we can use the fol-
lowing expression for the streamline function [13]:

1 (x-8)q(E)dt

n
Y(x,r)=0.5r2 - — +C,
n'([«/(x—éf —w2p? l
(10)
> LM, <l,
= |Moo _1|3n =
x—-wr, M >1,
2
n%, M, <1,
g =4 (1)
n——, M, >1.
dx

Here we use dimensionless coordinates based
on the body length L. The velocity components
and the pressure coefficient can be obtained from
(10) with the use (3), (4) and (7). In particular, for
pressure coefficient the following formula can be
used [13]:
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can be used to calculate the temperature coeffici-
ent for supersonic flows in air, [13]. Here 7 and
T, are temperatures (local and in the ambient flow

respectively), R, is the gas constant.

Some approximate formulas relate the local
pressure on the slender body surface with its local
radius [15, 16]:

d*R? D

= +0(e%), e=—.
X

Y7 (14)

c,(x)=-Ineg

It was shown in [16], that equation (14) is valid for
both sub- and supersonic flows.
If

0(x) = [q(®)de; O, =0 +h/2) - O —h/2);
0
& =ih—h/2,i=123,..,n, h=1/n,

the integral in formula (10) can be replaced by
sums similar to (8). In particular, at M =0 such

0.3
0.25

0.2

replacement yields an exact solution of Euler equ-
ations coinciding with (8), (9). In our MATLAB
codes we have used sums instead of integral (10).
Examples of calculations are shown in Fig. 1 for
two different sources intensities distributions:

2
ax” +bx, 0 < x < X,
a(x) = X (15)
a(x-1)7, x <x<1,
3 4
cx” +dx™, 0 < x < x.,
g,(x) = ) (16)
aq(x-1)7, x <x<1,

where a, b, ¢, d, a, and x. are constant parameters.

Fig. 1 illustrates that distribution (16) yields
concave nose of the body and much smaller values
of pressure on it. The pressure distributions corres-
ponding to the exact solution and the slender body
theory are rather close (except for the midline of
the body). It follows from (3) and (10) that:

7)

near the point (0,0). It follows from (15) and (17)
that axial velocity is still infinite (like in the case of
single source (3) at the point(€;,0) ). It means that

corresponding body has a stagnation point at some
negative value of x (not shown in Fig. 1). For
comparison, distribution (16) yields a small value
of v, in (17) and the absence of the stagnation

point on corresponding body with the concave
nose (see solid black line in Fig. 1).

Vx ~ q(x)/x2

0.15
0.1}
0.05[%

R(x)x10, ¢,(x)

-0.05
-0.1
-0.15

g i i i i
055 0.1 0.2 03 0.4

Figure 1: Comparison of exact solutions and the slender body theory for two different shapes. Blue lines correspond to sources dis-
tribution (15), black lines — distribution (16). Exact solution (8), (9) was used to calculate body shapes (R(x)x10, solid lines); dashed
lines show corresponding pressure coefficient (7); dotted lines illustrate the application of the linear theory to calculate the pressure

coefficient (12) with the use of exact solution for the body radius
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Results

The maximal swimming speed of the fastest
fish (e.g., sailfish Istiophorus platypterus Show and
Nodder, swordfish Xiphias gladius L., black marlin
Makaira indica Cuv et Val.) is around 30 m/s [1, 10,
11]. At such high velocities, the pressure at a stag-
nation point exceeds the ambient one by 4.5 atm.
(see eq. (7)). Probably, rostrums allow these ani-
mals to remove stagnation points and high pres-
sures on the body surface. To support this hypo-
thesis, a series of calculations has been carried out
with the use of exact solution (8), (9) and the
sources/sinks intensity distribution (16). The results
are shown in Figs. 2 and 3.

Shapes with sharp concave rostrums and with-
out stagnation points were obtained. The values of

the parameters a, b, ¢, d, a, and x. in (16) were

chosen to obtain a rather good similarity with the
trunks of sailfish, black marlin and swordfish. To
investigate what happens when the body nose is
not concave, the distribution (15) was used without
changing the values of parameters @, and x.. The re-

sults of similar calculations can be found also in [4].
The corresponding body radius (red dotted line)
and the pressure distribution (red dashed line) are
also shown in Figs. 2 and 3. It can be seen that ra-
ther small changes of shape (compare green solid
line and red dotted one in Fig. 2) cause significant
difference in pressure distributions (compare green
and red dashed lines). In particular, there is a
stagnation point on the shape with convex nose
(red dotted line) located very close to the point
(0,0), which is not shown in Figs. 2 and 3.

o

R(x), ¢,(x)

"0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1

X

Figure 2: Axisymmetric shapes with rostrums (solid lines) similar to sailfish (green), swordfish (blue) and black marlin (black).
Dashed lines correspond to pressure distributions. Red lines show the shape (dotted) without concave nose and corresponding pres-
sure distribution (dashed) calculated in [4] with the use of distribution (15)

0.12/4 ’

R(x), ¢,(x)

0 0.05 0.1

0.15 0.2

0.25
X

Figure 3: A zoomed part of Fig. 2
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Figure 4: Shape of axisymmertic body with the rostrum (black lines) calculated with the use of exact solution (8), (9) at M
Dashed lines correspond to the pressure distributions calculated with the use of (12). Green, blue and red lines correspond to M

0.5 and 0.9 respectively

The absence of a stagnation point is very im-
portant at high velocities when the corresponding

pressure increases drastically (p ~ U? according to

equation (7)) and the fluid compressibility has to
be taken into account. To simulate the influence of
Mach number, a new series of calculations has been
performed with the use of (8), (9), (12) and the
sources/sinks intensity distribution (16). At M >0
this solution in no more exact, but it accuracy can
be rather good as Fig. 1 demonstrates. The results
are shown in Fig. 4. The body shape (black lines)
was calculated with the use of exact solution at
M = 0. The pressure distributions for M =0, 0.5
and 0.9 were calculated with the use of approx-
imate formula (12) (green, blue and red lines re-
spectively). It can be seen that the body with a
sharp concave rostrum can ensure small values of
the pressure coefficient and absence of the stagna-
tion point on its surface in a subsonic flow.

Discussion

Drag on bodies of revolution with rostrum

The absence of the stagnation point does not
remove the question of the hydrodynamic drag on
bodies with a rostrum. At small Mach numbers the
minimum possible value of the drag can be achi-
eved by eliminating the boundary-layer separation.
In this case, not only the pressure drag decreases,
but also the frictional one due to the delay of the
laminar-to-turbulent transition [4]. On the bodies
of revolution with the rostrum shown in Figs. 1—4,

= 0.
=0

the pressure increases on their noses (in compar-
ison with the bodies without rostrum shown in
Figs. 1—3, calculated and tested in [3, 4, 17—19]).
These positive pressure gradients can cause separa-
tion, the presence or absence of which requires
further research. But it is worth noting that expe-
riments with rigid bodies similar to the body shape
of sailfish and swordfish revealed an attached flow
pattern [1]. Unfortunately, the book [1] does not
specify in what way the lack of the boundary-layer
separation was proved.

If there is no separation on the surface of the
body with the rostrum, then its drag X can be es-
timated by the formula [4]:

2X 4.7

T T (18)

for Reynolds numbers less than the critical value [4]:

Gy

3
RC*L _ 5955[/87'CL )

It is seen from (18) that the value of drag does not
depend on the shape and taking into account also
(1) we can obtain: X ~ U>/?V'"/?(similar to other
slender bodies of revolution without boundary-layer
separation [4]).

The maximal speed U, (in m/s) of an ani-

mal or a vehicle providing the laminar attached
flow pattern was estimated in [4] as follows:

U, ~286L". (19)
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The body (hull) Iength in (19) must be taken in
meters. The ratio U, /L"”° calculated in [4] is

13—20.8 for sailfish, 11.5—15.1 for swordfish and
8.4—11.8 for black marlin. These values approach
the maximal one (see (19)) and are higher or
comparable than for some other good swimmers
which have no rostrsharks, dolphins, tunas). The

U.../L'” ratios for torpedoes Mark 48 and

Spearfish (having no rostrum) are 7.23 and 9.17
respectively [4]. Thus, we can conclude that the
presence of rostrum does not increase the drag.

Supercavitating bodies of revolution with con-
cave cavitatiors

At high speed motion in water, the local
pressures and the cavitation number
_2p.-p) _
G =" —

~ 2g(h, +10)

P U2 p U2 (20)

decrease and cavitation occurs [20—23]. In formu-
la (20) we have neglected the pressure inside the
cavity in comparison with the atmospheric pres-
sure, corresponding to the water column of 10 m;
h, is the depth of steady motion in meters.
Nevertheless, pressures at the stagnation points
can be very high according to the formula (7).
E.g., at the nose of a slender cone entering the
water at speed 1000m/s, the local pressure can
reach 5000 atm. and can cause the destruction of
the entering body.

To avoid this huge pressure increase, the spe-
cial shapes without stagnation points can be used.
In particular, special shaped concave cavitators
(parts of the hulls wetted by water) were proposed
in [24]:

1.5
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R(X) = hx* +px+1, £<0. (21)

Here and further in this Subsection, all di-
mensionless lengths (marked with a "wave") are
based on the value of the cavitator radius R, at the
point of cavity separation X = 0. The conical cavi-
tator corresponds to b, = 0, and the parameter B is

equal to the derivative of the radius of the cavitator
at Xx=0. At = 0.1; b, = 0.0025, egs. (11) and
(21) allow obtaining the sources distribution (16)
with d =0. It means that corresponding concave
cavitator has no stagnation point (see (17)).

The friction drag can be diminished, when
some part of the hull is located inside the cavity to
avoid a contact with the water flow. To calculate
the cavity shape, eq. (14) can be integrated with
the use of the conditions of continuity of the ra-
dius and its derivative at X = 0:

ox’

2InpB

Here we use the condition ¢ =p. The accuracy of

the first approximation equation (22) can be increa-
sed with the use of next approximations which are
dependent on the Mach number [25].

The examples of cavitators (eq. (21)), cavities
(eq. (22)) and parts of the hulls located inside
the corresponding cavities at ¢ = = 0.1 are shown

in Fig. 5. Green and black lines represent concave
cavitators, but only green one (corresponding
b, = 0.0025) has no stagnation point. For compari-
son the conical cavitator is shown by the red line.
Each of these 3 cavitators can be combined with
the parts of the hull located inside the correspond-
ing cavities (blue, magenta and brown lines).

R (%) = (22)

+2BXx+1, x=0.

R/Ry

0.5

Y%= s =T = 0

10 15 20 25 30

X/ Ry

Figure 5: Shapes of axisymmertric cavitators, cavities and parts of the hulls located inside the cavities at ¢ = B = 0.1. Green, black
and red lines represent the cavitator radii at 5, = 0.0025; 0.002 and 0 respectively. Blue, magenta and brown lines show the cavity
shapes (dotted) and shapes of the hulls (solid) located in the corresponding cavities at ¢ = 0.1, 0.06 and 0.04 respectively
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The pressure drag X, on cavitator and corres-
ponding volumetric drag coefficient Cy,

2X,

T

was calculated in [24] with the use of exact solu-
tion (similar to proposed in [16]) based on (21),
(22) and corresponding sources/sinks distributions
(11) at M = 0. The volume of the hull V' was as-

sumed to be equal to the total volume of cavitator
and the corresponding cavity (the volume the gap
between the hull and the cavity surface was neglec-
ted). The results of calculations demonstrated that
the pressure drag coefficient is minimal for the con-
cave cavitator without stagnation point (b, = 0.0025
[24]). The friction drag on concave cavitator could
be larger in comparison with the conical one. But
for concave cavitator with b, = 0.0025, the surface-
to-volume ratio is only 11% higher then for conic-
al one (b, = 0). Therefore, at fixed volumes, the
bodies of revolution without stagnation points re-
move high pressures on their surface without in-
creasing the drag.

Hpypersonic bodies of revolution with rostrums

For a vehicle moving in the air at high Mach
numbers, it is critical to reduce the heating of its
surface (see, e.g., [26—31]). Many different ap-
proaches have been proposed to optimize the shape
of hypersonic hulls [32—39], but the von Karman
ogive [40] remains the most common shape of the
axisymmetric hypersonic forebody [41]. Even non-
blunt conical noses proposed in [34, 41] cause a

0.1
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stagnation point and very high temperatures. Ac-
cording to (13) the local temperature of air can be
estimated as:

(k-hU2
2kR

in the vicinity of the stagnation point. The velocity
U, in (23) must be taken in m/s. For example, at

U, = 3000 m/s, the local temperature exceeds the

ambient one by 4476 K.

If the shape of the body provides a flow with-
out the stagnation point, the heating of its nose
surface can be significantly reduced. The results of
calculations are shown in Fig. 6 for different values
of the Mach number. Since the pressure and tem-
perature coefficient are very close for slender bo-
dies (see (13)), one curve represent the distribution
of the pressure and the temperature versus longitu-
dinal coordinate x/L. At M, = 0 the body shape

(solid black line) and pressure distribution (dashed
black line) were calculated with the use of exact so-
lution (8), (9) and the sources/sinks distribution (16).
Pressure and temperature coefficients on the sur-
face of this body were calculated with the use of
(12) and (13) at M_ = 3; 5; 10 and 20 (dashed
blue, magenta, brown and green lines respectively).

A significant pressure drag X, occurs at super-
sonic speeds. The corresponding drag coefficient
was calculated for the slender body of revolution
presented in Fig. 6. The results are Gy, = 0.0077;

0.0053; 0.0019 and 5.35-10° at M, = 3; 5; 10
and 20 respectively. These values can be compared

T=T, + T, +497-10*U2 (23)

0.08

0.06

0.04

0.02

Rx5, ¢, cr

-0.02

-0.04

-0.06

-0.08

-0.1

0 0.1 0.2 0.3

0.5 0.6 0.7 0.8 0.9 1
x/L

Figure 6: Shape of the slender body of revolution with the rostrum and pressure/temperature coefficients distributions at different
values of Mach number. Black lines represent the body radius (R(x/L)x5, solid) and ¢, (x/L) (dashed) calculated with the use of
exact solution (8), (9) and the sources/sinks distribution (16). Dashed blue, magenta, brown and green lines show the pressure
and temperature coefficients on the surface of this body calculated with the use of (12) and (13) at M,, = 3; 5; 10 and 20 respectively
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with the Gy, value for Sears—Haack body (with

blunt leading and trailing edges) which ensures the
least pressure drag ant fixed volume and length [40]:

1281473
Gy, = — (24)

Putting into (24) the value V/L° = 2.365-107*
calculated for the body shown in Fig. 6, we obtain

Gy, ~ 5.96-10*. This figure is much smaller than
listed below Cj, values for the body with rostrum

(shown in Fig. 6), but at M =20 this body has
much lower pressure drag coefficient. This fact re-
quires further research.

Fig. 6 shows that the temperature coefficient
on the entire body surface does not exceed 0.02.
This means that special body shapes with rostrums
can reduce the maximum temperature on their sur-
face by more than 50 times. In particular, at a speed
of 3000 m/s, this maximum temperature exceeds
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the ambient one by no more than 90 K on the en-
tire surface of the body shown in Fig. 6.

Conclusions

Bodies of revolution with a rostrum similar to
trunks of the fastest fish (sailfish, swordfish and
black marlin) were calculated with the use of exact
solution of Euler equations. The corresponding
flow patterns have no stagnation point. This fact
allows diminishing the maximum pressure on the
surface. Similar shapes with the sharp concave
nose could be recommended for cavitators in order
to reduce significant local loads on the high-speed
supercavitating bodies of revolution without loses
in volumetric drag coefficient. Proposed axisym-
metric bodies also demonstrate significant reduces
in air temperature on the surface at high Mach
numbers.
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I.I". HecTepyk

IHCTUTYT rigpomexanikn HAH Ykpainn, Kuis, YkpaiHa
KMl im. Iropsi Cikopcbkoro, Kuis, YkpaiHa

®OPMMU TINA HAALUBUALLUX PUB | ONTUMANBHI CYNEPKABITALIWHI TA FMEP3BYKOBI TINNA OBEPTAHHA

Mpo6nematuka. Havikpawi nnasui mawoTb 06TiYHY dopMmy, sika 3abe3dnevye Tedito 6e3 BiAPMBY NPUMEXKOBOroO LIapy i 3aTpumye
namiHapHo-TypbyneHTHuI nepexia. Cama ix doopma mMoxe OyTU NPUYMHOKO Manoro onopy Ta BMCOKOI WBWMAKOCTI pyxy. Hanwsuawi
pubwn, Hanpuknag BiTPUNbHUK, puba-Mey, YOpPHUI MapniH TOLO, MalTb We oAHY 0co6NUBICTL CBOET (DOPMU — AyKe rOCTPUI Hic —
POCTPYM, NPU3HAYEHHS SIKOrO 3anmWLIAETbCs He3po3yMinum. MolwmpeHa Aymka, WO Li XMXKaku BUKOPUCTOBYIOTb POCTPYM AJ1si MPOKOIH0-
BaHHs 3000uu4i, 4acTo NiaaaeTbCsA CyMHIBY.

MeTta. Y ubomy JocnigXeHHi MW aHanisyeMo riApoAvHaMIYHi acrneKTu HasiBHOCTI POCTPYMYy Ta MOXIMBE BUKOPUCTaHHSA MOZIGHMX
KOpMycCiB ANsi CynepkasiTylouMX NigBOAHMX anapaTiB i LWBMAKOrO NPOHUKHEHHS Y Boay. Mu inocTpyemo, Wwo opmu 3 ayxe roctpum
HOCOM MOXYTb BYTW KOPUCHUMW ANA TiNep3BYKOBKX PYXiB, OO BUKMIOUNTY NeperpiB ro3ensiky TpaHCMOpPTHOro 3acody.
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MeTopuka peanisauii. [ins mogentoBaHHA po3noginy TUCKYy Ha Tinax obepTaHHA 3 rocTPMM HOCOM BMKOPMCTOBYKOTBCH BiAOMi TOYHi
pO3B’A3KkN piBHAHb Elnepa Ans Hectucnueoi pigvHn. Ona MogentoBaHHS cynepkasiTauil Ta 0CecMMETPUYHOT Teudii NoBITPs 3a BENUKUX
yncen Maxa BUKOPUCTOBYETLCHA TEOPISt TOHKOTO Tina.

PesynbTaTtn. Po3paxoBaHo Tina obepTaHHA 3 pocTpyMoMm, nofibHi Ao Tyny6iB Hanwsuawmx pub (BiTpunbHUKa, pubu-med, YOpHOro
MapriHa) Ta BignoBiaHi koediuieHTU TUCKY | TemnepaTypu. 3anponoHoBaHi opMu 3abe3neyytoTb BiACYTHICTb TOYOK ranbMyBaHHS! NOTO-
Ky Ta@ BUCOKOrO TUCKY | TeMnepaTypy Ha HOCKKY Ha JO- Ta HaA3BYKOBMX LUBUAKOCTSX SK Y BOAI, Tak i B NoBiTpi. Byno ouiHeHo onip Taknx
Tin obepTaHHa Ansa 6e3BiapuBHKX, CynepKaBiTaLiHUX | HaA3BYKOBMX CXeM OOTIKaHHS.

BucHoBku. 3anponoHoBaHO MeTOA pPO3paxyHKy OCECUMETPUYHMX Tin 6e3 TO4OoK ranbMyBaHHS MOTOKY Ha iXHil noBepxHi. Lia
ocobnuBicTb hopMu fae 3MOry 3MEHLUMTU MaKCMMarbHWUIA TUCK | TeMnepaTypy Ha HOCKKY 6e3 3Ha4HOro 36inbLueHHs onopy. Taki gopmm
3 FOCTPUM YBIrHyTUM HOCMKOM MOXHa PEKOMEHAyBaTV AN BUCOKOLIBUAKICHMX 6e3BiapvBHUX i cynepkaBiTauiiHuX Tin obepTtaHHsa Ta Ans
rinep3ByKOBOrO PyXy.

KntoyoBi cnoBa: nepecyBaHHSA BOAHWUX TBapViH; Tina obepTaHHs; 3MEHLLEHHS HaBaHTaXEeHHS; 3MEeHLLEHHS ornopy; onTumisauis dopmu;
6e3BiapuBHI (hopmu; cynepkasiTalisi; rinep3ByKoBi Teuii.

W.I". Hectepyk

WHcTutyT rugpomexanukm HAH YkpaunHbl, Kues, YkpanHa
KM um. Uropsi Cukopckoro, Kues, YkpavHa

®OPMbI TEJTA CAMbIX BbICTPbIX Pblb U ONTUMAJIbHbLIE
CYNEPKABUTALUMUOHHBIE U TMNEP3BYKOBbLIE TENTA BPALLEHUA

Mpo6nemaruka. Jlyywne nnoBupbl MMeOT 06Tekaemyto popMy, koTopasi obecneynBaeT TeyeHne 6e3 oTpbIBa NOrpPaHUYHOro Crosi 1 3a-
AepXvBaeT NnaMmHapHo-TypOyneHTHbIn nepexoa. Cama nx gopma MoxeT OblTb MPUYMHON Manoro CoNnpoTMBIIEHUS U BbICOKOW CKOPOCTH
nepeaBwkeHusi. Camble GbiCTpble pbiBbl, HANPUMEP NapyCHWK, pbiba-mMey, YEPHbI MapvH U T.4., UMEIT eLle ofHy 0CO6eHHOCTb hop-
Mbl — OY€Hb OCTPbI HOC — POCTPYM, Ha3Ha4YeHe KOTOPOro ocTaeTcsl HessICHbIM. PacnpocTpaHeHHOe MHEHVE O TOM, YTO 3TU XULLHWKW
MCNonb3yT POCTPYM ANS NpoKarbiBaHus cBoe Aobblun, YacTo ocnapuBaeTcs.

Lenb. B aToM nccnegoBaHuy Mbl aHanuavpyem rupoavHaMmnyeckue acnekTbl Hanuuust pocTpyma U BO3MOXHOE UCMONb3oBaHue no-
[OGHBIX KOPMycoB AN CynepKaBUTUPYIOLMX MOABOAHBLIX annapaToB M OGbICTPOro MpPOHWKHOBEHWS B Body. Mbl unniocTpupyem, 4To
OpMbI C O4EHb OCTPLIM HOCOM MOTYT ObITb NONE3Hbl AN MMNEP3BYKOBOIO ABMXKEHUSI, YTOObI UCKMIOUMTL Neperpes ro3ensxa TpaHc-
NopTHOro cpeacTaa.

MeToavka peanusaumu. [Ing MoaenupoBaHus pacnpefeneHns AaBneHus Ha Tenax BpalleHUst C OCTPbIM HOCOM MU UCMOMb3yeM U3-
BECTHble TOYHbIE PEeLUEeHVsI YpaBHEHWUI Jdiinepa ANs HEeCKUMaeMOMn XuAKoCTW. [Ana mMoaenvpoBaHus cynepkaBuMTaLMM U OCeCUMMET-
PUYHBIX TEYEHWUI BO3ayXa Npu BbICOKMX Yncnax Maxa ncnonb3yercs Teopus TOHKOro Tena.

Pe3ynbTaTtbl. PaccuntaHbl Tena BpalleHus ¢ pocTpyMoM, NoAo0HbIe TynoBuLLaM caMbiX BbICTPbIX pbib (MapycHuka, pbibbl-Mey, YepHO-
ro MapnvHa), U CooTBETCTBYIOLUME KOIDDULMEHTBI AaBIEHUs U TemnepaTypsbl. MpeanoxeHHble (hopMbl rapaHTUPYIT OTCYTCTBME TOY-
KM TOPMOXXEHUS MOTOKA U BbICOKOrO AABMEHUS U TEMMEPATYpbl HA HOCUKE Ha [0- U CBEPX3BYKOBbLIX CKOPOCTSIX Kak B BOAE, Tak U B BO3-
payxe. NpoBeaeHbl OLEHKN COMPOTUBNEHNS TaKUX Ten BpalleHus Ans 6e30TpbIBHbIX, CyNepKaBUTALMOHHBIX Y CBEPX3BYKOBbLIX CXxeM 0b-
TeKaHus.

BbiBopbl. MpeanoxeHa meToauka pacyeTta OCECMMMETPUYHBIX Ten 6e3 TOYeK TOPMOXEHUS Ha MX MOBEpPXHOCTU. dTa OCOBEHHOCTb
hopMbI NMO3BONAET CHU3UTL MakCMMarbHOe AaBreHVe U TemnepaTypy Ha Hocuke 6e3 3HauYMTenbHOro yBenuyeHus noboBoro conpo-
TUBNeHus. Takve popmbl C OCTPbIM BOFHYTHIM HOCUKOM MOTYT GbiTb PEKOMEHAOBaHbI ANs BbICOKOCKOPOCTHbLIX 6E30TpbIBHBIX U Cynep-
KaBUTALMOHHBIX TEN BpaLLeHUsi, a Takke Ans rMnep3ByKOBOrO ABUKEHUS.

KnroueBble cnoBa: nepensmxeHne BOAHbIX XXUBOTHbIX; Tena BpalleHUA,; CHUXEeHNE Harpy3okK; CHUXeHWne CconpoTMUBIiEHUA; oNTUMMN3a-
una CbOprI; 6e30prIBHbIe CbOprI; cynepkaButauund; rmnep3BykoBble TEYEHUA.



