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Background. Several mathematical representations of contagious disease COVID-19 were evolved in order to
capture the pragmatic aspect of unfurling of the disease. It is learned that individuals who became receptive
were infected with a rate proportional to the fraction of the individuals affected by the infection, in the
comprehensive population as well as the infected individuals recuperate at a sustained rate. It is also ob-
served that in the SIR model, all contacts impart the disease with an identical probability.

Objective. We will estimate the dynamic epidemic behaviour of inflected population for India with the use of
fractional-order SIR simulations and compare our results with the results obtained for extrapolated actual
cases of the infected people.

Methods. We have obtained the approximate solutions of the fractional-order Susceptible-Infectious-
Recovered model within the framework of the modified Riemann—Liouville fractional differential operator
using a new iterative fractional complex transform technique.

Results. The optimal values of the fractional-order SIR model parameters were identified with the use of the
New Iterative Method. The dynamic incident rate with high and low reproduction number is predicted as
well as the illustrated graphical with actual data is provided. To sum, the fractional calculus model for a
complex system proposed here is just an indication to show what might happen if we do not control the re-
production number in the community.

Conclusions. The control measures that have already been found like swift surveillance, quarantine and social
distancing means, such as face masks and closures, assisted in curtailing coronavirus transmission — esti-
mated by the average number of people each infected individual infects, or reproduction number, to close to
the level of 1 in each month.

Keywords: SIR-modeling; modified Riemann—Liouville fractional operator; numerical simulations; COVID-19
outbreak; basic reproduction number.

Introduction

China was the initially infected nation; the
behaviour of a novel coronavirus (COVID-19) is
distinct from that of the rest of the world. The
health care sector has not been prepared for the
pandemic; in fact, before some cases were identi-
fied, no one was aware of the virus. Moreover, in a
considerable short time, China government took
strong contentious steps and, although the virus
remains widespread, they were able to contain the
increasing infections. Thus, the study of pandemic
dynamic evolution has been a centre of attraction
in recent times. Several mathematical representa-
tions of contagious disease were evolved in order to
capture the pragmatic aspect of unfurling of the
disease [1—5]. It is learned from the above refer-
ence that individuals who became receptive were
infected with a rate proportional to the fraction of

the individuals affected by the infection, in the
comprehensive population as well as the infected
individuals recuperate at a sustained rate. It is also
observed that in the SIR model, all contacts impart
the disease with an identical probability.

Mostly in SIR model, the mathematical
functions used are in the form of an ordinary de-
rivative. In many cases, however, the classical de-
rivative is not able to describe precisely these com-
plex phenomena. With this aim, many researchers
try to model as well as to analyze the dynamic be-
haviour of these nonlinear systems by means of
fractional calculus. These fractional operators may
mould more adeptly precise real-world circum-
stance, specifically when the dynamics are affected
by constraints inherent to the system. There exist
several definitions for fractional derivatives and frac-
tional integrals like the Riemann—Liouville, Caputo,
Hadamard, Riesz, Griinwald—Letnikov [6—9]. In
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recent times, the notion of fractional-order deriva-
tives has gained significance because they kept a few
of the properties of ordinary derivatives. There is a
lot of ongoing research where fractional-order de-
rivatives mathematical models have been fabricated
to predict the transmission dynamics in future.

Of most recent literature, some authors have
accepted the work on the fractional-order model,
which can be summarized as given below.
Angstmann et al. [10, 11] considered the frac-
tional-order infectivity as well as recovery SIR epi-
demic model for dynamical analysis and obtained
numerical simulations using the Generalized Euler
Method. Hamdan and Kilicman [12] studied the
dynamical behaviour of a virus dynamics model
with general incidence rate and cure rate for den-
gue transmission. Mouaouine ef al. [13] studied the
vigorous deportment of a virus dynamics model
with broad occurrence rate and cure rate. Wang et
al. [14] presented the delayed fractional-order SIR
(susceptible and removed) epidemic model with sa-
turated incidence and treatment functions. Sene [15]
considered the SIR epidemic model with some
hold up in the situation of the fractional derivative
with Mittag—Leffler kernel, and graphically illus-
trated the approximate solutions of the model.
Shaikh ef al. [16] estimated the outbreak of disease
and potential control strategies using mathematical
models using iterative fractional complex transform
method to find approximate solutions of the model
having modified Riemann—Liouville fractional dif-
ferential operator. Recently, Nesteruk [26] used the
classical SIR model to obtain an exact solution of
complex pandemic characteristics for the United
States, Germany, the United Kingdom, the Repub-
lic of Korea and the world using SIR simulations
to compare them with previous results.

In this article, we aim to introduce fractional
calculus for modeling the complex systems, espe-
cially the SIR epidemic model. Firstly, we briefly
discussed the basic fractional derivatives in the pre-
liminary section; and, secondly, the formulation of
the fractional-order model of pandemics with a
nonlinear incidence rate. Thirdly, modified new
iterative fractional complex transform technique
suiting our model is obtained. Finally, we present
an approach to predict the dynamic incident rate
with high and low reproduction number as well as
the illustrated graphical with actual data. To sum,
the fractional calculus model for a complex system
proposed here is just an indication to show what
might happen if we do not control the reproduc-
tion number in the community.
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Preliminaries

Firstly, this paper describes the Caputo de-
rivative and many lemmas required.

Definition 2.1 The Riemann—Liouville deriva-
tive [17—19] of an order o of an arbitrary function

f() eC"([ty,+x),R) is specified as

1

D(l
O o ar )

j(t— 0" fode (1)

where f, >7, D/ denotes the Riemann—Liouville
of order o, I'(.) is the Gamma function, # is the
first integer which is greater than a, and o is the
positive integer such that n-l<a<n If

0 < a <1, then one obtains

DO = jf © 4 @

Definition 2.2 The Riemann—Liouville integral
of an order « is defined as

t
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Definition 2.3 An alternative explanation of the
fractional derivative was proposed by Caputo [6] as

D f(t)=J"*D" f(r)
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The Caputo fractional derivative is a uniform-
ity emerging in the time genesis for the Riemann—
Liouville fractional derivative by assimilating the
pertinent initial circumstances [20]. With precau-
tion taken, the results achieved using the Caputo
formulation can be re-modeled to the Riemann—
Liouville version.

Definition 2.4 Jumarie [21] has proposed an
alternate definition as modified Riemann—Liouville
derivative by the expression

Dify=rr— 2 dt”j( 0" f(0) - £(0)]dr. (5)
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Formulation of the model

The complex behaviour of the infectious dis-
eases in the classical susceptible-infected-recupe-
rated model (SIR), developed by Kermack and
McKendrick [1] as

St =-rS@I(), (1)
=rSI0) -y I(t), R(t) = 971 (1) (6)

in which three human epidemiological conditions
are (i) S(¢) susceptible (number of people capable

of transmitting the virus) at the time ¢, (ii) 1(¢)
infected (individuals that are contagious and capa-
ble of spreading the virus to others) at the time ¢,
and (iii) R(¢z) describe the recuperated/removed
(individuals that have been infectious. Here » =3/ N
is the average number of contacts per infective per
day, B is the contact rate, N=S+1+ R is the
population size, 1/y is the mean infectious period,
thus vy is the recovery rate, 3 denotes the fraction
of infectious individuals who recover from the dis-
ease; thus the fraction (1-9) dies from the dis-
ease, and the prime ( . ) in equations denotes dif-
ferentiation with respect to the variable time #, re-
spectively.

The flow diagram for the disease dynamics
with compartments .S, / and R are given in Fig. 1.

G r S@I(t) | 9yI(7r) O

1(1 - 911

Figure 1: Flow diagram of the SIR model

By using fractional Caputo derivative of order
a on either side of each Eq. (6), and assuming the
certainty that Caputo fractional derivative and frac-
tional integral are operating inversely, the following
fractional differential equation can be achieved for
SIR model as

DES(t) = —r S(t)I(1), DX 1(7)
= r SI(t) -y I(¢), DOR(t) = SyI ().

)

To transform the differential equation given by
F,u®,u??,.) =0, u® =d*u@)/dt*, 0<a<l

in non-integer form into an ordinary differential
equation, introducing a complex variable [22], and

using the basic properties of the fractional deriva-
tive given in Eq. (5), one obtains

qt* d“u du
_ L 8
CTurw ae ©

in which ¢ is constant (which will be determined

later) and u;* represents modified Riemann—Liou-

ville derivatives.
Substituting Eq. (8) in Eq. (7), one obtains the
system of equations as

5@) = —é[r SEIE)],
1) = g r SEI(E) — 1 1©)], 9)
R() = é[sw(an

with initial conditions
S0)=S8,>0,10)=1;,>0,R0)=R,20,0<a <1 (10)

in which the prime ( ) in equations denotes dif-
ferentiation with respect to the variable time &.

From the initial conditions, the disease-free
equilibrium is obtained as (5,7, R) =(S,0,0).
Thus, focusing on the second equation of Eq. (9),
one obtains the threshold between the disease dy-
ing out or causing a pandemic as 20, =7rS,/y=1.
From the dynamics of the system, if 2, <1, then

the infectious individuals decreases monotonically
to zero, whereas if 2, >1 then the infection will

be spreading in a population before tending to zero.

If we consider the natural death rate as
d > 0, then the equation for the infectious individ-
ual is expressed as

1) = é[r SOIEQ -+ 1©] (1)

which provides the basic reproduction number
(2,) for the model as

_ r8(0)
" @d+y)’

A
SO=5 (12)

where A >0 is the susceptible individual per unit
time.

In order to solve Egs. (10) and (12), a new
iterative technique can also be considered, which
has been framed in the later sections.
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Extended 'New iterative method'

Consider the nonlinear equation
yl(t) = Nl(y](t)ryZ(t)a~,yn(t)) +C, l = 172,'"7” (13)

in which Nj is a nonlinear operator.

We assume the solution of Eq. (13) in the fol-
lowing series form

k
y=y, )=y ,®),i=12..,n (14)

Jj=0

N. can be decom-

The nonlinear operator N,

posed [23] as
N;(y)=N;(»)

n k k-1
+Z{N,~ [Z y,(r)] - N, [2 yj(t)J}. (15)
i=1 Jj=0 Jj=0

Substituting Egs. (14) and (15) into Eq. (13)
yields

iyi,j(t) =c+ N;(yy(1)
i=0

+i{fvi (ﬁ y,-(r)} N, (kzl y,m}. (16)
i 720 720

We define the recurrence relation as

yO = yi,O(t) =,
n=y1(8) = Ni(3y(1)),

Y2 = Yia() = Ny (@) + y (1) = N; (0 (1)), (17)
Yim1 = yi,m+](t) = Ni(yO(t)"’yl(t)"' ---+ym(t))
=Ny @) + (@) + ...+ ¥, (1))
The K — term series solution is given as
YVi=Yot Y+t Vmu
=N,y +y () +..+y,0), m=12... (18)

To check the convergence status of Eq. (58),
we consider the proof by contradiction [24], i.e.
IV, (x) = N;(»)ll < Kllx — yl, 0< K <1, then

1Yl = IN; o + 31 + oo+ )
-N;(yg +y; +... ym—l)”
<IN (x) = N; ()l

<K [yull< K™ llyol, m=0,1,2... (19
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and the series Zio y; absolutely and uniformly
converges to a solution of Eq. (1).

Forecast of pandemics

In this section, by using the extended New It-
erative Method (NIM) as given in Eq. (18), which
is a modified technique of Daftardar—Gejji and Jafari
method (DGJ) is applied for data fitting, numeri-
cal stimulation and graphical demonstration of the
Caputo COVID-19 model given in Eq. (9) for the
population of India and some most infected state.
The data pertaining to our study is available on
websites of the public health authority. Firstly the
basic reproductive number 2, for our model can

be directly generated by one individual in a popu-
lation. By applying the iterative fractional complex
transform using Egs. (8) and (17), we get series
form approximate solution of the fractional model
as given in Eq. (7) as given below

S, =S8@)
k Jjo
+Zm{[—rsm+l It~ - S
=1
I(ti+]) = ](ti)
St~y 1 20
+Z F(1+Ot)j {[I’ (t1+1) (t1+1) Y (t1+1)] ( )
S -y 1))
R(ti+]) = R(ti)
+iL~{[9vl(f D=8y 1)1}
ard+ay " !

Now, we consider our model from the # = 0
as per data with the initial first case of susceptible
reported on 30" January 2020, and upto the
maximum number of infected cases in total in In-
dia [25] as on 29" August 2020 for analysis and
simulation. Hence the required initial values are
taken as S(0) = 1380004385, 1(0) = 1, R(0) = 0.
The other parameters were estimated based on as-
sumptions and facts such as the Death rate (d) is
set to 7.23 deaths per 1000 people, median esti-
mate of the Incubation period is set to 5.5 days,
Contact Rate (B) is 19.29, Transmissibility is set
as 2.0%, and the duration of Infectiousness is
11 days. For the mathematical calculation of the
dynamical behaviour of the infected population,
we consider the high and low value of reproduc-
tion number (2,) for our model as 3.86 and 1.16
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respectively for different value of fractional order
a=0.6,0.7,0.8,0.9,1 with respect to time (in Days).

Similarly, based on historical data if we take
the nonlinear algebraic using a best fit polynomial
curve of order 5 as

() = —0.0002 £ +35.0417* —3x10° 13
+1x10M2 —3%x107+3x10°, R =99.97% (21)

where R? is the co-efficient of determination.

Now taking y, =0 and N(y,(#)) <0, we can
employ the algorithm given in Eq. (17) to get the
solution as follows

Yo=L YV =Ny +0 +ct V)
N+ +eet Yp)sm=12,....

Hence, we can quickly obtain extrapolated
historical data for our comparative analysis using
Eq. (21).

Classical SIR model (@ = 1): The values in
Table 1 illustrates the complete scenario of the es-
timated results of infected populations for a« = 1
order. Fig. 2 depicts the moving average and growth
rate in new cases per day of the inflected commu-
nity along time for classical SIR model to predict-
ing the developmental pattern of the disease situa-
tion and promoting the decision-making mecha-
nisms for infection prevention. Fig. 3 shows the
historical behaviour of new cases per day along
time shows an exponential enhancement in in-
fected patients.

Table 1: Indian epidemic features based on classical SIR model

Parameters Values
Total Cases 3463972
Total Deaths 62550
Infected Cases 3401422
Average Growth Rate in New Cases 7.11%
Average Growth Rate in New Deaths 15.12%
Average Infected Case Growth Rate 5.75%
Average Daily Mortality Rate 0.16%
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Figure 2: Moving average and growth rate in new cases per day
of inflected population along time for a = 1
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Figure 3: Historical behaviour of new cases per day along time
fora =1

Fractional-order SIR model (0 < a < 1):
Figs. 4 and 5 show the dynamical behaviour of in-
flected population along time (in days) for various
values of a for a fixed low 2, = 1.16 and high

2, = 3.86, for different values of o = 0.6, 0.7, 0.8,

0.9, 1. It is observed that with the lowering of re-
production number 2, the population of infected

cases along the period after a saturation point de-
creases monotonically towards zero. The fractional
model makes, depending on the system parameters,
both a disease-free and an infectious, long-term
equilibrium state.
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Figure 4: Dynamical behaviour of inflected population along
time for various values of a and fixed 2, =1.16
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Figure 5: Dynamical behaviour of inflected population along
time for various values of a and fixed 2, = 3.86
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From Table 2, it is seen that with the de-
crease of the fractional parameter value «, the in-
fected case also reduces with respect to time (in
days). Thus, it is observed that reducing the con-
tact rate by increasing the quarantined period, so-
cial distancing, and restricting the migration can
reduce the seriousness of pandemic effectively, and
flattening of cure of infection will nearly take a
year of time.

Table 2: Comparative study of extrapolated and calculated
figures of inflected population

Reproduction Estimated No. Inﬂect?d
3 of population
number details .
days in Nos.
3.86 Extrapolated 203 6559000
: Calculated 200 6559000
1.16 Extrapolated 203 3580000
: Calculated 192 3499000
Conclusions

In this article, we have obtained the approxi-
mate solutions of the fractional-order Susceptible-
Infectious-Recovered model within the framework
of the modified Riemann—Liouville fractional dif-
ferential operator. The estimated results and actual
cases of the infected population are computed us-
ing a new iterative fractional complex transform
technique by reducing the computation steps and
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illustrated graphically. Again, without the availabil-
ity of vaccine or effective treatment, ceasing trans-
mission is the only defence against COVID-19.
Realizing the consequences of each control meas-
ure is essential to understand the ones that can be
safely changed or detached. A comparative analysis
with some of the highly infected countries shows
that if preventive steps such as quarantine and ur-
ban sanitation are strictly implemented, India can
still control the situation. The forecasting models
would help prepare the government and medical
workforce for future scenarios to provide greater
readiness in health care systems. The control mea-
sures that have already been found like swift sur-
veillance, quarantine and social distancing agen-
cies, such as, face masks and closures, assisted in
curtailing coronavirus transmission — estimated by
the average number of people each infected indi-
vidual infects, or reproduction number to close to
the level of 1 in each month. Moreover, incorpo-
rating data from around the world will allow the
researchers to compare individual countries for the
best design fractional-order SIR model that can
make more accurate predictions about new phases
of the pandemic and analyze transmission dynam-
ics across many nations. It is recommended that
more studies can be conducted with the proposed
dynamic model for forecasting outbreaks in other
countries.
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B. Baprese, C. bxosip, K.C. Hicap
AHATI3 MOLENI APOBEOBOIO NOPAAKY ONs NAHAEMIT COVID-19 I3 HENIHIMHOK YACTOTOI 3AXBOPIOBAHOCTI

Mpo6nemaruka. Kinbka MmatemaTu4HUX Moaenei iHgekuinHoro 3axsoptoBaHHs COVID-19 6ynu po3pobneri ansi Toro, Wwob Binobpasu-
TW NPaKTUYHUIA acneKT NOLIMPEHHS LbOro 3axBOptoBaHHA. BcTaHOBNEHO, WO noan, ski cTanu BpasnvMBuUMK A0 Bipycy, iHgikyBanucs 3i
LIBWUAKICTIO, MPONOPLINHOK YacTui Moaen, ypaxeHux iHekuieo, cepel 3aranbHOro HacemneHHs, a TakoX Lo LWBUAKICTb OAyXaHHSA
iHchikoBaHWX ntoaelt € nocTiHot. BiasHavaeTbes, Wwo B SIR-Moaeni BCi KOHTakTHI ocobu MOXyTb nepefaTtu XxBopoby 3 0HaKoBO
MMOBIpPHICTIO.

MeTa. Mu oujiHl0EMO auHaMIiKy enigemiyHoi noBeaiHkK iHgIKOBAHOrO HaceneHHs IHAil 3 BukopuctaHHam SIR-mopentoBaHHs 4po6oBoro
nopsiaky Ta MOpiBHIOEMO Halli pe3ynbTaT 3 pesynbTaTaMmu, OTPUMaHMMK ANS eKCTPanonboBaHWX hakTUYHUX BUNaAKiB iHQiKyBaHHA
nogen.

MeTtoauka peanisauii. OTpmaHo HabnwxkeHi po3e’sa3ku SIR-mMopeni ApoboBoro nopsinky B Mexax moaudikoBaHoro ApoboBo-
OndepeHuiansHoro onepatopa PimaHa—JliyBinnsi 3 BUKOPUCTaHHSIM HOBOTO iTepauiiiHoro Metofy Apo6OBOro KOMMMEKCHOIO NeEpeTBo-
PEHHS.

Pe3ynbTaTtu. 3a ONOMOrow HOBOrO iTepauiiHOro MeToy BCTAHOBMEHO ONTMMarbHi 3Ha4YeHHs napameTpiB SIR-mogeni gpobosoro
nopsgky. CnporHo3oBaHO AMHAMIYHY YacTOTy BUNAAKiB i3 BUCOKUM i HU3bKUM YMCIIOM BiATBOPEHb, @ TAaKOX HaBOAMTLCS iMOCTPOBAHWUIA
rpagik i3 pakTMyHMMK gaHumu. BigsHaunmo, LWo nponoHoBaHa HaMu MoAernb ApPoO0BOro 0b6YMCNEHHs AN CKNaaHOoi CUCTEMU € NnuLle
NOKa3HUKOM TOTO, L0 MOXe CTaTucs, AKLWO My He ByAeMO KOHTPOMOBATU YMCO BTOPUHHUX BUNAAKIB 3apa)KeHHs, BUKMMKAHUX OOHIE0
iHchikoBaHO NIOANHOI, B NO3arnikapHAHMX yMOBaX.

BUCHOBKW. Yxe BCTaHOBIEHi 3aX0AM KOHTPOMIO, TaKi SIk onepaTtyMBHE CMOCTEPEXEHHS], KAPaHTWH | 3aX04u CoLjianbHOro AUCTaHLilOBaH-
HS, HaNpvKnag Macku Anst 06nm4ys i obmexeHHs B pobOTi pi3HMX 3aknagis, 4ONOMOrnM 06MeXxnTn nepegady KopoHasipycy, Lo oy i-
HIOETbCS 32 CepeHbOI KINbKICTIO Moaew, siki 3apaxatTbCsl OAHUM iHikoBaHMM, TOGTO 3a penpoayKUiHUM YMCIOM, Lo Aocsrae
npmbnusHo 1y KoxeH Micaub.

Knio4oBi cnoBa: SIR-mogentoBaHHS; MmogudikoBaHuin apo6oBuin onepaTtop PimaHa—[liyBinns; yucnose moAentoBaHHS; cnanax
COVID-19; 6a3oBe penpoayKuilHe Yncro.

B. Baprese, C. bxosip, K.C. Hucap
AHAINKW3 MOJENN OPOBHOIO NOPAQKA ANA NAHOEMUMU COVID-19 C HENNTMHEUHOW YACTOTOM 3AEONIEBAEMOCTU

Mpo6nematuka. Heckonbko MaTtemaTuyeckmx Mogenemn nHdekumnoHHoro 3abonesanuss COVID-19 6binm paspaboTaHbl 4ns TOro, YToobl
0TO06pPa3nTb NPaAKTUYECKMIA AcreKT pacnpoCTpaHeHns 3Toro 3aboneBaHusl. YCTaHOBIIEHO, YTO MOAN, KOTOPbIE CTanu BOCNPUUMYUBBLIMA
K BMPYCY, MH(PULMPOBaNuNCb CO CKOPOCTHIO, MPONOpLUMOHanbHON Aone nioden, NopaKeHHbIX UHAgeKuuen, cpean obLiero HaceneHus, a
Takke 4YTO CKOPOCTb BbI34OPaBNMBAHMSA UHMULMPOBAHHbLIX Nogel sBnsieTcs noctosiHHon. OTMevaeTcs, Yto B SIR-Mogenu Bce KOH-
TaKTHble NuLa MoryT nepeaartb 60ne3Hb ¢ 0 ANHAKOBOW BEPOATHOCTHHO.
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Lenb. Mbl oueHMBaemM OUHAMUKY 3MUMAEMWUYECKOrO NMOBeAEHMS UHMUUMPOBAHHOrO HaceneHus MHaum ¢ ucnonb3oBaHnem SIR-
MoAenvpoBaHus ApobHOro nopsiaka U cpaBHMBAEM Hallu pe3ynbTaTtbl C pedynbTatamu, NOMyYeHHbIMU AfS 3KCTPanonnpoBaHHbIX
aKTM4ecknx cnyvyaes MHPULMPOBaAHNS MIOAEN.

MeToauka peanusaumun. [NonyyeHbl NpubnukeHHble pewweHns SIR-mogenu gpobHoro nopsigka B paMmkax MoanduumpoBaHHOro apob-
Ho-anddepeHumansHoro onepatopa PumaHa—lInyBunns ¢ MCnonb3oBaHWEM HOBOFO UTEPALMOHHOrO MeToaa APOGHOr0 KOMMIIEKCHOro
npeobpasoBaHusl.

Pe3ynbTatbl. C NOMOLLbIO HOBOTO MTEPALMOHHOIO MeToAa onpeaeneHbl onTMMarbHble 3HaYeHus1 napameTpoB SIR-mMoaeny apobHoro
nopsigka. CrnporHo3upoBaHa AMHaMu4yeckasi YactoTa CrlyvyaeB C BbICOKMM M HU3KUM YMCMIOM BOCMPOU3BEAEHUW, @ Takke NMpUBOAMUTCS
VNMOCTPUPOBAHHBIN rpadvk ¢ dakTndeckummn gaHHbiMu. OTMeTMM, 4TO npeanaraemas Hamm mMopenb ApOOHOro ucunucneHus Ans
CNOXHOW CUCTEMBI ABNSETCA NULLb NoKa3aTenem Toro, YTo MOXEeT NPOU30NTU, ecrnv Mbl He ByieM KOHTPONMPOBAaTb YMCIIO BTOPUYHbBIX
CryYaeB 3apaxeHusl, BbI3BaHHbIX OAHUM UHULMPOBAHHBLIM YENIOBEKOM, BO BHEGONBHUYHBIX YCIOBUSIX.

BbiBoAbl. YXe yCTaHOBMEHHbIE MEPbl KOHTPOMS, TakMe Kak onepaTuBHOe HabnwaeHne, kKapaHTVH U Mepbl COLMUAarnbHOIo AUCTaHUMpOo-
BaHWUS, HaNpUMep Macku ANs nvua U orpaHnyeHust B paboTe pasnuyHbiX 3aBeA4eHWI, MOMOrMM OrpaHnyYnTb nepegadvy KopoHaBupyca,
KOTOpasi OLeHMBAETCS N0 CPEAHEMY KONUYECTBY Ni0AEN, 3apaxaeMbiX OOHUM UHPULIMPOBaHHLIM, TO €CTb MO PENPOAYKTUBHOMY YuCHy,
gocrturaroLemMy npubnuantensHo 1 B Kaxabli MecsiL.

KnioueBble cnoBa: SIR-mMofgenvpoBaHue; MoandULMpoBaHHbI ApobHbIN onepaTtop PumaHa—l1vyBunns; YyucneHHoe MogenmpoBaHue;
Bcnbiwka COVID-19; 6azoBoe penpoayKTMBHOE YNCHO.



